当前位置: X-MOL首页全球导师 国内导师 › 施路平

个人简介

教育背景 1989.09 -1992.12 德国科隆大学结晶学研究所,博士 1985.09 -1988.07 山东大学晶体所,硕士 1978.01 -1981.12 山东大学物理系毕业 工作履历 2014.09 -至今 清华大学类脑计算研究中心,主任 2013.03 -至今 清华大学光盘国家工程研究中心,主任,特聘教授 1996.08 -2013.03 新加坡科技局数据存储研究院期间历任:人工认知存储器实验室主任;光学材料和系统实验室主任;非易失性存储器实验室主任; 光学媒体实验室主任;资深科学家III, II,I;科学家;首席研究工程师;高级研究工程师 1994.02 -1996.07 香港城市大学光电子中心,博士后研究员 1993.01-1993.12 德国Frauhofer 应用光学和精密仪器研究所,博士后研究员 1988.08 -1989.08 山东大学,国家晶体材料重点实验室,讲师 1981.02 -1985.07 山东大学实验中心,助理工程师

研究领域

类脑计算、信息存储、集成光电子、智能系统和仪器

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

2022 Wu, Y., Zhao, R., Zhu, J., Chen, F., Xu, M., Li, G., ... & Shi, LP*. (2022). Brain-inspired global-local learning incorporated with neuromorphic computing. Nature Communications, 13(1), 1-14. Ma, S., Pei, J., Zhang, W., Wang, G., Feng, D., Yu, F., ... & Shi, LP*. (2022). Neuromorphic computing chip with spatiotemporal elasticity for multi-intelligent-tasking robots. Science Robotics, 7(67), eabk2948. Zhao, R., Yang, Z., Zheng, H., Wu, Y., Liu, F., Wu, Z., ... & Shi, LP*. (2022). A framework for the general design and computation of hybrid neural networks. Nature Communications, 13(1), 1-12. 2021 Lim, D. H., Wu, S., Zhao, R., Lee, J. H., Jeong, H., & Shi, LP*. (2021). Spontaneous sparse learning for PCM-based memristor neural networks. Nature communications, 12(1), 1-14. Tian, L., Wu, Z., Wu, S., & Shi, LP*. (2021). Hybrid neural state machine for neural network. Science China Information Sciences, 64(3), 1-13. Wang, G., Ma, S., Wu, Y., Pei, J., Zhao, R., & Shi, LP*. (2021). End-to-end implementation of various hybrid neural networks on a cross-paradigm neuromorphic chip. Frontiers in Neuroscience, 15, 615279. 2020 Li, G., Tang, P., Chen, X., Xiao, G., Meng, M., Ma, C., & Shi, LP*. (2020). Target control and expandable target control of complex networks. Journal of the Franklin Institute, 357(6), 3541-3564. Deng, L., Wang, G., Li, G., Li, S., Liang, L., Zhu, M., ... & Shi, LP*. (2020). Tianjic: A unified and scalable chip bridging spike-based and continuous neural computation. IEEE Journal of Solid-State Circuits, 55(8), 2228-2246. Wang, Y., Wu, S., Tian, L., & Shi, LP*. (2020). SSM: a high-performance scheme for in situ training of imprecise memristor neural networks. Neurocomputing, 407, 270-280. Zhang, Y*.; Qu, P.; Ji, Y.; Zhang, W.; Gao, G.; Wang, G.; Song, S.; Li, G.; Chen, W.; Zheng, W.; Chen, F.; Pei, J.; Zhao, R.; Zhao, M.; and Shi, LP*。(2020). A system hierarchy for brain-inspired computing, Nature, 586(7829): 378-384. Deng, L.; Wang, G.; Li, G.; Li, S.; Liang, L.; Zhu, M.; Wu, Y.; Yang, Z.; Zou, Z.; Pei, J.; Wu, Z.; Hu, X.; Ding, Y.; He, W.; Xie, Y.; and Shi, LP* (2020). Tianjic: A Unified and Scalable Chip Bridging Spike-Based and Continuous Neural Computation. IEEE Journal of Solid-State Circuits, 55(8): 2228-2246. 施路平; 裴京; 赵蓉; (2020). 面向人工通用智能的类脑计算, 人工智能:类脑计算与脑科学, 1: 6-15. 2019 Wang, Y., Zhang, Z., Li, H., & Shi, LP*. (2019). Realizing bidirectional threshold switching in Ag/Ta2O5/Pt diffusive devices for selector applications. Journal of Electronic Materials, 48(1), 517-525. Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., & Shi, LP*. (2019, July). Direct training for spiking neural networks: Faster, larger, better. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 1311-1318). Wu, S., Wang, G., Tang, P., Chen, F., & Shi, LP*. (2019). Convolution with even-sized kernels and symmetric padding. Advances in Neural Information Processing Systems, 32. Li, H., Li, G., & Shi, LP*. (2019). Super-resolution of spatiotemporal event-stream image. Neurocomputing, 335, 206-214. Lee, J. H., Lim, D. H., Jeong, H., Ma, H., & Shi, LP*. (2019). Exploring cycle-to-cycle and device-to-device variation tolerance in MLC storage-based neural network training. IEEE Transactions on Electron Devices, 66(5), 2172-2178. Wu, S., Li, G., Deng, L., Liu, L., Wu, D., Xie, Y., & Shi, LP*. (2018). $ L1 $-norm batch normalization for efficient training of deep neural networks. IEEE transactions on neural networks and learning systems, 30(7), 2043-2051. Wang, Y., Zhang, Z., Xu, M., Yang, Y., Ma, M., Li, H., ... & Shi, LP*. (2019). Self-doping memristors with equivalently synaptic ion dynamics for neuromorphic computing. ACS applied materials & interfaces, 11(27), 24230-24240. Pei, J.; Deng, L.; Song, S.; Zhao, M.; Zhang, Y.; Wu, S.; Wang, G.; Zou, Z.; Wu, Z.; He, W.; Chen, F.; Deng, N.; Wu, S.; Wang, Y.; Wu, Y.; Yang, Z.; Ma, C.; Li, G.; Han, W.; Li, H.; Wu, H.; Zhao, R.; Xie, Y.; and Shi, LP* (2019). Towards artificial general intelligence with hybrid Tianjic chip architecture, Nature, 572(7767): 106-111. (封面文章) Li, G., Chen, X., Tang, P., Xiao, G., Wen, C., & Shi, LP*. (2019). Target control of directed networks based on network flow problems. IEEE Transactions on Control of Network Systems, 7(2), 673-685. Li, H., & Shi, LP*. (2019). Robust event-based object tracking combining correlation filter and CNN representation. Frontiers in neurorobotics, 13, 82. Wang, Y., Zhang, Z., Li, H., & Shi, LP*. (2019). Realizing bidirectional threshold switching in Ag/Ta2O5/Pt diffusive devices for selector applications. Journal of Electronic Materials, 48(1), 517-525. 2018 Shi, L. (2018, November). Brain Inspired Computing Devices, Chips and System. In 2018 Asia-Pacific Magnetic Recording Conference (APMRC) (pp. 1-1). IEEE. Li, G., Deng, L., Tian, L., Cui, H., Han, W., Pei, J., & Shi, LP*. (2018). Training deep neural networks with discrete state transition. Neurocomputing, 272, 154-162. Li, G., Deng, L., Xiao, G., Tang, P., Wen, C., Hu, W., Pei, J., Shi, L. and Stanley, H.E., 2018. Enabling controlling complex networks with local topological information. Scientific reports, 8(1), pp.1-10. Wu, Y., Deng, L., Li, G., Zhu, J., & Shi, LP*. (2018). Spatio-temporal backpropagation for training high-performance spiking neural networks. Frontiers in neuroscience, 12, 331. Zhang, Z., Wang, Y., Li, H., Wu, Y., Wang, G., & Shi, LP*. (2018). Engineering the Synaptic Kinetic Process into Memristive Device. Advanced Electronic Materials, 4(6), 1800096. Li, H., Li, G., Ji, X., & Shi, LP*. (2018). Deep representation via convolutional neural network for classification of spatiotemporal event streams. Neurocomputing, 299, 1-9. Zhang, Y., He, W., Wu, Y., Huang, K., Shen, Y., Su, J., ... & Shi, LP*. (2018). Highly compact artificial memristive neuron with low energy consumption. Small, 14(51), 1802188. Zhang, Y., He, W., Wu, Y., Huang, K., Shen, Y., Su, J., ... & Shi, LP*. (2018). Highly compact artificial memristive neuron with low energy consumption. Small, 14(51), 1802188. Jeong, H., & Shi, LP*. (2018). Memristor devices for neural networks. Journal of Physics D: Applied Physics, 52(2), 023003. 2017 Li, H., Liu, H., Ji, X., Li, G., & Shi, LP*. (2017). Cifar10-dvs: an event-stream dataset for object classification. Frontiers in neuroscience, 11, 309. 2016 Li, H., Li, G., & Shi, LP*. (2016, November). Classification of spatiotemporal events based on random forest. In International Conference on Brain Inspired Cognitive Systems (pp. 138-148). Springer, Cham Li, G., Deng, L., Xu, Y., Wen, C., Wang, W., Pei, J., & Shi, LP*. (2016). Temperature based restricted Boltzmann machines. Scientific reports, 6(1), 1-12. Li, H., Zhang, Z., & Shi, LP*. (2016). Identifying and engineering the electronic properties of the resistive switching interface. Journal of Electronic Materials, 45(2), 1142-1153. Zhang, Z., Li, H., & Shi, LP* (2016). Correlation and ordering of defects in the formation of conducting nanofilaments. Journal of Physics D: Applied Physics, 49(12), 125303. Li, H., Pei, J., & Shi, LP*. (2016). Electronic structure and spin configuration trends of single transition metal impurity in phase change material. Journal of Electronic Materials, 45(10), 5158-5169. Li, G., Deng, L., Wang, D., Wang, W., Zeng, F., Zhang, Z., ... & Shi, LP*. (2016). Hierarchical chunking of sequential memory on neuromorphic architecture with reduced synaptic plasticity. Frontiers in computational neuroscience, 10, 136. 2015 Ning, N., Li, G., He, W., Huang, K., Pan, L., Ramanathan, K., ... & Shi, L. (2015). Modeling neuromorphic persistent firing networks. International Journal of Intelligence Science, 5(02), 89. Shi, L., Pei, J., Deng, N., Wang, D., Deng, L., Wang, Y., ... & Ma, C. (2015, December). Development of a neuromorphic computing system. In 2015 IEEE international electron devices meeting (IEDM) (pp. 4-3). IEEE. Yang, H., Shi, L., Zhao, R., Lee, H. K., Li, J., Lim, K. G., ... & Chong, T. C. (2014). Growth-Dominant Superlattice-Like Medium and Its Application in Phase Change Memory. ECS Journal of Solid State Science and Technology, 4(3), N13. Li, G., Ramanathan, K., Ning, N., Shi, L., & Wen, C. (2015). Memory dynamics in attractor networks. Computational intelligence and neuroscience, 2015. Hongxin, Y., Luping, S., Koon, L. H., Rong, Z., Minghua, L., Jianming, L., ... & Chong, C. T. (2015). Multi-level lateral phase change memory based on N-doped Sb70Te30 super-lattice like structure. ECS Journal of Solid State Science and Technology, 4(12), N147 Shi, L. (2015, September). A study of the nature of light by comparing real and digital universes. In The Nature of Light: What are Photons? VI (Vol. 9570, pp. 125-134). SPIE

推荐链接
down
wechat
bug