个人简介
Ph.D., National University of Córdoba, Argentina; Postdoc, Columbia University.
研究领域
Biophysics
Mammalian cells are known to exhibit a sophisticated and coordinated response to DNA damage. We have determined that a dynamic macromolecular assembly of proteins occurs as part of that response and this includes transcription, RNA processing and DNA repair factors. Our lab is interested in identifying and analyzing those protein complexes, to understand the molecular basis of the transcription-coupled RNA processing process and how these interactions regulate gene expression after DNA damage. These studies involve a large number of experimental approaches, including a variety of in vitro assays, cell imaging, biochemical fractionation and protein purification, cDNA and genomic DNA cloning, production of recombinant proteins and antibodies, and genetic analyses of cultured cells. Our studies are based on a model whereby the tumor suppressor BRCA1 helps to coordinate a ubiquitous cellular response to DNA damage, a response that includes general factors such as RNA polymerase II (RNAP II) and polyadenylation factors. RNAP II is responsible for synthesis of mRNA precursors and also functions directly in DNA repair processes and polyadenylation. Polyadenylation, the addition of the poly(A) tail to an mRNA, is the last step in the synthesis of mRNA and plays important regulatory roles in different cell types and at different stages of the cell cycle. We propose that BRCA1/BARD1-containg complex is recruited to sites of DNA damage, where it functions to initiate degradation of stalled RNAP II, thereby inhibiting the coupled transcription-RNA processing machinery and facilitating repair. Although BRCA1 has been identified as a gene that confers susceptibility to early onset familial breast and ovarian cancers, the determination of a mechanism by which functional loss of BRCA1 promotes tumor formation still constitutes a major challenge. Understanding the role of BRCA1/BARD1 in transcription, RNA processing and DNA repair may contribute not only to improving the therapies and diagnosis of breast cancer, but also, as a long term goal, to developing strategies for the prevention of the disease. We are currently studying how this occurs, and how these interactions contribute to DNA repair and gene control. Current projects in the lab include: 1) Determination of the mechanism(s) of polyadenylation and transcription inhibition by BRCA1/BARD1 after DNA damage. This includes utilization of in vitro assays as well as different in vivo assays for studying different macromolecular assembly formation 2) Analysis of the effect of RNA processing factors on TCR. These studies are being performed in cells deficient in polyadenylation factors. 3) Examination of the intranuclear organization of polyadenylation factors, BARD1, BRCA1 and RNAP II in UV-treated cells. 4) Study of the direct association of BARD1/BRCA1, RNAP II and polyadenylation factors with DNA repair sites.
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Zhang, X., Kleiman, F.E., and Devany, E. (2013). Deadenylation and its regulation in eukaryotic cells. Invitation to write chapter to a volume of the series "Polyadenylation: Methods and Protocols" in Methods in Molecular Biology, Humana Press.
Devany, E., Zhang, X., Park, J.Y., Tian, B., Kleiman, F.E. (2013). Positive and negative feedback loops in the p53 and mRNA 3' processing pathways. Proc. Natl. Acad. Sci. USA 110: 3351-3356.
Goss, D.J., Kleiman, F.E. (2013).· Poly(A) Binding Proteins-Are they all created equal? Advance review in Wiley Interdisciplinary Reviews WIREs RNA. Mar;4(2):167-79.
Nazeer, F.I., Devany E., Mohammed, S., Fonseca, D., Akukwe, B., Taveras, C., and Kleiman, F.E. (2011). p53 inhibits mRNA 3' processing through its interaction with the CstF/BARD1 complex. Oncogene, 30(27):3073-83.
Zhang, X., Virtanen, A., and Kleiman, F.E. (2010). To polyadenylate, or to deadenylate: that is the question. Cell Cycle; 9(22):4437-4449.
Cevher, M.A., Zhang, X., Fernandez, S., Kim, S., Baquero, J., Nilsson, P., Lee, S., Virtanen, A., and Kleiman F.E. (2010). Nuclear deadenylation/polyadenylation factors regulate 3' processing in response to DNA damage. EMBO J. 29(10):1674-1687.
Cevher, M.A. and Kleiman, F.E. (2010). Connections between 3' end processing and DNA damage response. Focus article in Wiley Interdisciplinary Reviews WIREs RNA.http://wires.wiley.com/WileyCDA/WiresArticle/wisId-WRNA20.html.·
Mirkin, N., Fonseca, D., Mohammed, S., Cevher, M.A., Manley, J.L. and Kleiman, F.E. (2008). The 3' processing factor CstF functions in the transcription-coupled repair response. Nucleic Acids Research, 36(6):1792-1804.
Kim, H.S., Li, H., Cevher, M., Parmelee, A., Fonseca, D., Kleiman, F.E. and Lee, S.B. (2006). DNA damage-induced BARD1 phosphorylation is critical for the function of BRCA1/BARD1 complex. Cancer Res. 66(9):4561-4565.
Kleiman, F.E., Wu-Baer, F., Fonseca, D., Kaneko, S., Baer, R and Manley, J.L. (2005). BRCA1/BARD1 inhibition of 3’ processing involves targeted degradation of RNA polymerase II. Genes Dev. 15(10):1227-37.
Chen, A., Kleiman, F.E., Manley, J.L., Ouchi, T., and Pan, Z.Q. (2002). Auto-ubiquitination of the BRCA1/BARD1 RING ubiquitin ligase. J. Biological Chemistry, 277(24):22085-92.
Kleiman, F.E. and Manley, J.L. (2001). The BARD1-CstF-50 interaction links mRNA 3’ end formation to DNA damage and tumor suppression. Cell, 104:743-753.
Kleiman, F.E. and Manley, J.L. (1999). Functional interaction of BRCA1-associated BARD1 with polyadenylation factor CstF-50. Science, 285:1576-1579.