研究领域
Analytical/Materials Chemistry/Physical Chemistry
The Hines Group studies surface chemistry at the atomic scale using scanned probe microscopy and other techniques, tackling both fundamental questions and those relevant to nanotechnology.
Research
Our research is aimed at understanding and controlling the structure and chemistry of nanoscale surfaces. Under some circumstances, simple chemical reactions can be much more precise and more controlled than the most advanced nanofabrication tools, selectively carving out near-atomically-perfect surfaces. Using a combination of scanned probe and electron microscopies, kinetic Monte Carlo simulations, and spectroscopic investigations, we are trying to understand the atomistic processes that govern these transformations. We have also shown that surface chemistry affects the mechanical properties of nanoscale materials, in some cases leading to extreme strength. The chemical origins of these effects are also under investigation.
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
“Aqueous etching produces Si(100) surfaces of near-atomic flatness: Stress minimization does not control morphology,” I. T. Clark, B. S. Aldinger, A. Gupta, and M. A. Hines, (submitted).
“Extracting maximum information from polarized surface vibrational spectra: Application to etched, H-terminated Si(110) surfaces,” I. T. Clark, B. S. Aldinger, A. Gupta, and M. A. Hines, J. Chem. Phys. 128, 144711 (2008).
“The effect of surface chemistry on mechanical energy dissipation: Silicon oxidation does not inherently decrease quality factor,” A. Richter, D. Sengupta, M. A. Hines, J. Phys. Chem. C 112, 1473-1478 (2008).
“Understanding the effects of surface chemistry on Q: Mechanical energy dissipation in alkyl-terimnated (C1–C18) micromechanical silicon resonators,” J. A. Henry, Y. Wang, D. Sengupta, and M. A. Hines, J. Phys. Chem. B 111, 88 (2007).
“Methyl monolayers improve the fracture strength and durability of silicon nanobeams,” T. Alan, A. T. Zehnder, D. Sengupta, and M. A. Hines, Appl. Phys. Lett. 89, 231905 (2006).
“Effect of Surface Morphology on the Fracture Strength of Silicon Nanobeams,” T. Alan, M. A. Hines, and A. T. Zehnder, Appl. Phys. Lett. 89, 091901 (2006).
“Production of Highly Homogeneous Si(100) Surfaces by H2O Etching: Surface Morphology and the Role of Strain,” M. F. Faggin, S. K. Green, I. T. Clark, K. T. Queeney, and M. A. Hines, J. Am. Chem. Soc. 128, 11455 (2006).
"Nanomechanical Resonant Devices: Surface Chemistry, Challenges and Opportunities," in Dekker Encylopedia of Nanoscience and Nanotechnology, J. A. Henry, D. Sengupta, M. A. Hines, (Dekker, 2005).
“Methyl monolayers suppress mechanical energy dissipation in micromechanical silicon resonators,” Y. Wang, J. A. Henry, D. Sengupta, and M. A. Hines, Appl. Phys. Lett. 85, 5736 (2004).
“Etchant anisotropy controls the step bunching instability in KOH etching of silicon,” S. P. Garcia, H. Bao, and M. A. Hines, Phys. Rev. Lett. 93, 166102 (2004).
“An improved algorithm for the suppression of interference fringe in absorption spectroscopy,” M. F. Faggin and M. A. Hines, Rev. Sci. Instrum. 75, 4547 (2004).
“The effects of diffusional processes on crystal etching: Kinematic theory extended to two dimensions,” S. P. Garcia, H. Bao, and M. A. Hines, J. Phys. Chem. B 108, 6062 (2004).
“Controlling energy dissipation and stability of micromechanical silicon resonators with self-assembled monolayers,” J. A. Henry, Y. Wang, and M. A. Hines, Appl. Phys. Lett. 84, 1765 (2004).
“Machining with chemistry: Controlling nanoscale surface structure with anisotropic etching,” M. A. Hines in From Solid-Fluid Interface to Nanostructural Engineering,Vol. I, edited by J. De Yoreo and X. Y. Liu (Plenum/Kluwer Academic, 2004), pp. 249-281.
“Surface chemical control of mechanical energy dissipation in micromachined silicon devices,” Y. Wang, J. A. Henry, A. T. Zehnder, and M. A. Hines, J. Phys. Chem. B 107, 14270 (2003).
“Understanding the pH dependence of silicon etching: The importance of dissolved oxygen in buffered HF etchants,” S. P. Garcia, H. Bao, and M. A. Hines , Surf. Sci. 541, 252 (2003).
“In search of perfection: Understanding the highly defect selective chemistry of anisotropic etching,,” M. A. Hines, Ann. Rev. of Phys. Chem. 54, 29 (2003).
“Measuring the site-specific reactivity of impurities: The pronounced effect of dissolved oxygen on silicon etching,” S. P. Garcia, H. Bao, M. Manimaran, and M. A. Hines, J. Phys. Chem B 106, 8258 (2002).
“The picture tells the story: Using surface morphology to probe chemical etching reactions,” M. A. Hines, Intl. Rev. of Phys. Chem. 20, 645 (2001).
“Morphological aspects of silicon oxidation in aqueous solutions,” M. A. Hines in Fundamental Aspects of Silicon Oxidation, edited by Y. J. Chabal (Springer, 2001), p. 13.