当前位置: X-MOL首页全球导师 海外导师 › Murrell, Michael Peter

个人简介

Michael Murrell is an Associate Professor in the Biomedical Engineering and Physics Departments, and the Systems Biology Institute at the Yale West Campus. Murrell received his B.S. from Johns Hopkins University in Biomedical Engineering and his PhD from the Massachusetts Institute of Technology in Bioengineering working for Paul Matsudaira and Roger Kamm. He then pursued his postdoctoral studies jointly with Margaret Gardel at the University of Chicago, and Cecile Sykes at the Institut Curie in Paris, France. Education & Training Postdoctoral Fellow Curie Institute (2013) Postdoctoral Fellow University of Chicago (2013)

研究领域

Murrell's interests are in understanding the mechanical principles that drive major cellular life processes through the design and engineering of novel biomimetic systems. To this end, he develops simplified and tractable experimental models of the mechanical machinery within the cell with the goal of reproducing complex cellular behavior, such as cell division and cell migration. Murrell then combines these ‘bottom-up’ experimental models with concepts from soft matter physics to gain a fundamental understanding of the influence of mechanics on cell and tissue behavior. In parallel, he hopes to identify new design principles from biology which can be used to create novel technologies.

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Cofilin-Mediated Filament Softening and Crosslinking Counterbalance to Enhance Actin Network Flexibility Sun Z, Murrell M. Cofilin-Mediated Filament Softening and Crosslinking Counterbalance to Enhance Actin Network Flexibility. Physical Review Letters 2024, 133: 218402. DOI: 10.1103/physrevlett.133.218402. Mechanical power is maximized during contractile ring-like formation in a biomimetic dividing cell model Sakamoto R, Murrell M. Mechanical power is maximized during contractile ring-like formation in a biomimetic dividing cell model. Nature Communications 2024, 15: 9731. PMID: 39523366, PMCID: PMC11551154, DOI: 10.1038/s41467-024-53228-y. Energy partitioning in the cell cortex Chen S, Seara D, Michaud A, Kim S, Bement W, Murrell M. Energy partitioning in the cell cortex. Nature Physics 2024, 20: 1824-1832. DOI: 10.1038/s41567-024-02626-6. Composite branched and linear F-actin maximize myosin-induced membrane shape changes in a biomimetic cell model Sakamoto R, Murrell M. Composite branched and linear F-actin maximize myosin-induced membrane shape changes in a biomimetic cell model. Communications Biology 2024, 7: 840. PMID: 38987288, PMCID: PMC11236970, DOI: 10.1038/s42003-024-06528-4. Active tension and membrane friction mediate cortical flows and blebbing in a model actomyosin cortex Sakamoto R, Murrell M. Active tension and membrane friction mediate cortical flows and blebbing in a model actomyosin cortex. Physical Review Research 2024, 6: 033024. DOI: 10.1103/physrevresearch.6.033024. Growth‐induced collective bending and kinetic trapping of cytoskeletal filaments Banerjee D, Freedman S, Murrell M, Banerjee S. Growth‐induced collective bending and kinetic trapping of cytoskeletal filaments. Cytoskeleton 2024, 81: 409-419. PMID: 38775207, DOI: 10.1002/cm.21877. Confinement induces internal flows in adherent cell aggregates Yousafzai M, Amiri S, Sun Z, Pahlavan ‪, Murrell M. Confinement induces internal flows in adherent cell aggregates. Journal Of The Royal Society Interface 2024, 21: 20240105. PMID: 38774959, PMCID: PMC11285874, DOI: 10.1098/rsif.2024.0105. Elastocapillary effects determine early matrix deformation by glioblastoma cell spheroids Ang I, Yousafzai M, Yadav V, Mohler K, Rinehart J, Bouklas N, Murrell M. Elastocapillary effects determine early matrix deformation by glioblastoma cell spheroids. APL Bioengineering 2024, 8: 026109. PMID: 38706957, PMCID: PMC11069407, DOI: 10.1063/5.0191765. F-actin architecture determines the conversion of chemical energy into mechanical work Sakamoto R, Murrell M. F-actin architecture determines the conversion of chemical energy into mechanical work. Nature Communications 2024, 15: 3444. PMID: 38658549, PMCID: PMC11043346, DOI: 10.1038/s41467-024-47593-x. Cofilin-mediated actin filament network flexibility facilitates 2D to 3D actomyosin shape change Sun Z, Yadav V, Amiri S, Cao W, De La Cruz E, Murrell M. Cofilin-mediated actin filament network flexibility facilitates 2D to 3D actomyosin shape change. European Journal Of Cell Biology 2023, 103: 151379. PMID: 38168598, DOI: 10.1016/j.ejcb.2023.151379. Actin and Microtubules Position Stress Granules Böddeker T, Rusch A, Leeners K, Murrell M, Dufresne E. Actin and Microtubules Position Stress Granules. PRX Life 2023, 1: 023010. DOI: 10.1103/prxlife.1.023010. Author Correction: Membrane tension induces F-actin reorganization and flow in a biomimetic model cortex Sakamoto R, Banerjee D, Yadav V, Chen S, Gardel M, Sykes C, Banerjee S, Murrell M. Author Correction: Membrane tension induces F-actin reorganization and flow in a biomimetic model cortex. Communications Biology 2023, 6: 470. PMID: 37117264, PMCID: PMC10147711, DOI: 10.1038/s42003-023-04818-x. Membrane tension induces F-actin reorganization and flow in a biomimetic model cortex Sakamoto R, Banerjee D, Yadav V, Chen S, Gardel M, Sykes C, Banerjee S, Murrell M. Membrane tension induces F-actin reorganization and flow in a biomimetic model cortex. Communications Biology 2023, 6: 325. PMID: 36973388, PMCID: PMC10043271, DOI: 10.1038/s42003-023-04684-7. Author Correction: Dysregulation of TSP2-Rac1-WAVE2 axis in diabetic cells leads to cytoskeletal disorganization, increased cell stiffness, and dysfunction Xing H, Huang Y, Kunkemoeller B, Dahl P, Muraleetharan O, Malvankar N, Murrell M, Kyriakides T. Author Correction: Dysregulation of TSP2-Rac1-WAVE2 axis in diabetic cells leads to cytoskeletal disorganization, increased cell stiffness, and dysfunction. Scientific Reports 2023, 13: 4253. PMID: 36918662, PMCID: PMC10015071, DOI: 10.1038/s41598-023-31191-w. F-actin architectures differentially constrain myosin thick filament motion Muresan C, Sun Z, Yadav V, Tabatabai A, Lanier L, Kim J, Kim T, Murrell M. F-actin architectures differentially constrain myosin thick filament motion. Biophysical Journal 2023, 122: 294a. DOI: 10.1016/j.bpj.2022.11.1662. Dysregulation of TSP2-Rac1-WAVE2 axis in diabetic cells leads to cytoskeletal disorganization, increased cell stiffness, and dysfunction Xing H, Huang Y, Kunkemoeller B, Dahl P, Muraleetharan O, Malvankar N, Murrell M, Kyriakides T. Dysregulation of TSP2-Rac1-WAVE2 axis in diabetic cells leads to cytoskeletal disorganization, increased cell stiffness, and dysfunction. Scientific Reports 2022, 12: 22474. PMID: 36577792, PMCID: PMC9797577, DOI: 10.1038/s41598-022-26337-1. F-actin architecture determines constraints on myosin thick filament motion Muresan C, Sun Z, Yadav V, Tabatabai A, Lanier L, Kim J, Kim T, Murrell M. F-actin architecture determines constraints on myosin thick filament motion. Nature Communications 2022, 13: 7008. PMID: 36385016, PMCID: PMC9669029, DOI: 10.1038/s41467-022-34715-6. Interplay between substrate rigidity and tissue fluidity regulates cell monolayer spreading Staddon M, Murrell M, Banerjee S. Interplay between substrate rigidity and tissue fluidity regulates cell monolayer spreading. Soft Matter 2022, 18: 7877-7886. PMID: 36205535, PMCID: PMC9700261, DOI: 10.1039/d2sm00757f. In Vitro Reconstitution of the Actin Cytoskeleton Inside Giant Unilamellar Vesicles. Chen S, Sun Z, Murrell M. In Vitro Reconstitution of the Actin Cytoskeleton Inside Giant Unilamellar Vesicles. Journal Of Visualized Experiments 2022 PMID: 36094272, DOI: 10.3791/64026. Cell-Matrix Elastocapillary Interactions Drive Pressure-Based Wetting of Cell Aggregates Yousafzai M, Yadav V, Amiri S, Staddon M, Errami Y, Jaspard G, Banerjee S, Murrell M. Cell-Matrix Elastocapillary Interactions Drive Pressure-Based Wetting of Cell Aggregates. Physical Review X 2022, 12: 031027. PMID: 38009085, PMCID: PMC10673637, DOI: 10.1103/physrevx.12.031027. A molecular clock controls periodically driven cell migration in confined spaces Lee SH, Hou JC, Hamidzadeh A, Yousafzai MS, Ajeti V, Chang H, Odde DJ, Murrell M, Levchenko A. A molecular clock controls periodically driven cell migration in confined spaces. Cell Systems 2022, 13: 514-529.e10. PMID: 35679858, DOI: 10.1016/j.cels.2022.05.005. Correction: The structural, vibrational, and mechanical properties of jammed packings of deformable particles in three dimensions Wang D, Treado JD, Boromand A, Norwick B, Murrell MP, Shattuck MD, O'Hern CS. Correction: The structural, vibrational, and mechanical properties of jammed packings of deformable particles in three dimensions. Soft Matter 2022, 18: 3815-3815. PMID: 35506750, PMCID: PMC9116153, DOI: 10.1039/d2sm90054h. Erratum: Bridging particle deformability and collective response in soft solids [Phys. Rev. Materials 5, 055605 (2021)] Treado J, Wang D, Boromand A, Murrell M, Shattuck M, O'Hern C. Erratum: Bridging particle deformability and collective response in soft solids [Phys. Rev. Materials 5, 055605 (2021)]. Physical Review Materials 2022, 6: 059901. DOI: 10.1103/physrevmaterials.6.059901. Gradients in solid surface tension drive Marangoni-like motions in cell aggregates Yadav V, Yousafzai S, Amiri S, Style R, Dufresne E, Murrell M. Gradients in solid surface tension drive Marangoni-like motions in cell aggregates. Physical Review Fluids 2022, 7: l031101. DOI: 10.1103/physrevfluids.7.l031101. Active Regulation of Pressure and Volume Defines an Energetic Constraint on the Size of Cell Aggregates Yousafzai M, Yadav V, Amiri S, Errami Y, Amiri S, Murrell M. Active Regulation of Pressure and Volume Defines an Energetic Constraint on the Size of Cell Aggregates. Physical Review Letters 2022, 128: 048103. PMID: 35148133, DOI: 10.1103/physrevlett.128.048103. Bridging particle deformability and collective response in soft solids Treado J, Wang D, Boromand A, Murrell M, Shattuck M, O'Hern C. Bridging particle deformability and collective response in soft solids. Physical Review Materials 2021, 5: 055605. DOI: 10.1103/physrevmaterials.5.055605. Filament Nucleation Tunes Mechanical Memory in Active Polymer Networks Yadav V, Banerjee D, Tabatabai A, Kovar D, Kim T, Banerjee S, Murrell M. Filament Nucleation Tunes Mechanical Memory in Active Polymer Networks. Advanced Functional Materials 2019, 29 PMID: 32523502, PMCID: PMC7286550, DOI: 10.1002/adfm.201905243. Work and Dissipation in the Cell Cytoskeleton Murrell M, Banerjee S, Ajeti V, Tabatabai P, Fleszar A, Staddon M, Seara D, Suarez C, Muhammad S, Bi D, Kovar D. Work and Dissipation in the Cell Cytoskeleton. Biophysical Journal 2019, 116: 3a. DOI: 10.1016/j.bpj.2018.11.040. A Dynamic Time Step Method in Cytoskeletal Simulations Tibbs J, Tabatabai A, Seara D, Tabei A, Murrell M. A Dynamic Time Step Method in Cytoskeletal Simulations. Biophysical Journal 2019, 116: 251a. DOI: 10.1016/j.bpj.2018.11.1370. F‑Actin Fragmentation Induces Distinct Mechanisms of Stress Relaxation in the Actin Cytoskeleton Jung W, Murrell M, Kim T. F‑Actin Fragmentation Induces Distinct Mechanisms of Stress Relaxation in the Actin Cytoskeleton. ACS Macro Letters 2016, 5: 641-645. PMID: 35614663, DOI: 10.1021/acsmacrolett.6b00232. F-Actin Fragmentation Induces Distinct Mechanisms of Stress Relaxation in the Actin Cytoskeleton Jung W, Murrell M, Kim T. F-Actin Fragmentation Induces Distinct Mechanisms of Stress Relaxation in the Actin Cytoskeleton. Biophysical Journal 2016, 110: 354a. DOI: 10.1016/j.bpj.2015.11.1911. High‐content imaging with micropatterned multiwell plates reveals influence of cell geometry and cytoskeleton on chromatin dynamics Harkness T, McNulty J, Prestil R, Seymour S, Klann T, Murrell M, Ashton R, Saha K. High‐content imaging with micropatterned multiwell plates reveals influence of cell geometry and cytoskeleton on chromatin dynamics. Biotechnology Journal 2015, 10: 1555-1567. PMID: 26097126, PMCID: PMC6948850, DOI: 10.1002/biot.201400756. F-actin cross-linking enhances the stability of force generation in disordered actomyosin networks Jung W, Murrell M, Kim T. F-actin cross-linking enhances the stability of force generation in disordered actomyosin networks. Computational Particle Mechanics 2015, 2: 317-327. DOI: 10.1007/s40571-015-0052-9. Liposome Adhesion Generates Contractile Traction Stresses Murrell M, Voituriez R, Joanny J, Nassoy P, Sykes C, Gardel M. Liposome Adhesion Generates Contractile Traction Stresses. Biophysical Journal 2015, 108: 181a-182a. DOI: 10.1016/j.bpj.2014.11.1003. How cells flow in the spreading of cellular aggregates Beaune G, Stirbat T, Khalifat N, Cochet-Escartin O, Garcia S, Gurchenkov V, Murrell M, Dufour S, Cuvelier D, Brochard-Wyart F. How cells flow in the spreading of cellular aggregates. Proceedings Of The National Academy Of Sciences Of The United States Of America 2014, 111: 8055-8060. PMID: 24835175, PMCID: PMC4050549, DOI: 10.1073/pnas.1323788111. Actomyosin sliding is attenuated in contractile biomimetic cortices Murrell M, Gardel M. Actomyosin sliding is attenuated in contractile biomimetic cortices. Molecular Biology Of The Cell 2014, 25: 1845-1853. PMID: 24760970, PMCID: PMC4055264, DOI: 10.1091/mbc.e13-08-0450. Liposome adhesion generates traction stress Murrell M, Voituriez R, Joanny J, Nassoy P, Sykes C, Gardel M. Liposome adhesion generates traction stress. Nature Physics 2014, 10: 163-169. DOI: 10.1038/nphys2855. Chapter Fifteen Reconstitution of Contractile Actomyosin Arrays Murrell M, Thoresen T, Gardel M. Chapter Fifteen Reconstitution of Contractile Actomyosin Arrays. Methods In Enzymology 2014, 540: 265-282. PMID: 24630112, PMCID: PMC4459579, DOI: 10.1016/b978-0-12-397924-7.00015-7. Distribution of directional change as a signature of complex dynamics Burov S, Tabei S, Huynh T, Murrell M, Philipson L, Rice S, Gardel M, Scherer N, Dinner A. Distribution of directional change as a signature of complex dynamics. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 19689-19694. PMID: 24248363, PMCID: PMC3856831, DOI: 10.1073/pnas.1319473110. F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex Murrell M, Gardel M. F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 20820-20825. PMID: 23213249, PMCID: PMC3529094, DOI: 10.1073/pnas.1214753109.

推荐链接
down
wechat
bug