当前位置: X-MOL首页全球导师 海外导师 › Karol, Paul J.

个人简介

2008 Chair, ACS Committee on Nomenclature, Terminology and Symbols 2007 Chair, IUPAC/IUPAP 3rd Joint Working Party on the Discovery of New Elements 2003 Chair, IUPAC/IUPAP 2nd Joint Working Party on the Discovery of New Elements 2000 Visiting Professor, Japan Atomic Energy Research Institute, Tokai 1999 Chair, IUPAC/IUPAP 1st Joint Working Party on the Discovery of New Elements 1996 Chair, ACS Division of Nuclear Chemistry and Technology 1996 Chair, IUPAC Commission on Radiochemistry and Nuclear Techniques 1995 Professor of Chemistry, Carnegie Mellon University 1991 Visiting Scientist, Institute of Nuclear Physics, Legnaro, Italy 1981-6 Associate Dean, Mellon College of Science 1974 Associate Professor of Chemistry 1969 Assistant Professor of Chemistry 1967 Postdoctoral Research Associate, Brookhaven National Laboratory

研究领域

Nuclear/Theoretical & Computational

We are involved in the investigation of "deep spallation" reactions from both an experimental and a theoretical perspective. Deep spallation is a class of nuclear reaction between a fast projectile, perhaps from an accelerator or cosmic rays, and a target nucleus causing the ejection of a number of protons and neutrons or clusters. The objectives of our research are to deconvolve, insofar as possible, the two steps of the mechanism of high-energy interactions -- the fast cascade or knock-on step, and the slower evaporation step. Experiments are performed at the Los Alamos National Laboratory and elsewhere using particles accelerated to intermediate and high energies in order to induce complex nuclear reactions on targeted isotopes. Following rapid chemical separations, gamma-ray spectroscopy of short-lived radioisotopes is performed to determine absolute yields and recoil momenta of reaction products. Results from experiments serve as a means to probe the nature of collisions within the nucleus and to examine the behavior of atomic nuclei at very high temperatures (> 1012). In particular, the "kinetic theory of soft-sphere collisions" is employed to model projectile mean free-path calculations. Cascades of two-body collisions induced by incident beam particles produce residual systems in highly excited states which subsequently cool by "boiling off' additional neutrons, protons and more complex clusters, leaving final products easily distinguished from the original target by their radioactivity which is measured. The nuclear evaporation process and its inherent relationship to the nuclear equation of state at high temperature are under investigation from a theoretical perspective. The results of experiment and theory have applications which include radioisotope production, nuclear waste incineration and the propagation of ultrahigh energy cosmic rays through intergalactic space and in the atmosphere leading to "extensive air showers". Work in our laboratories is also directed at the theory and application of very high-performance column chromatography. In particular, experiments that explore the dynamics of elution chromatography at and beyond the limit of conventional use in chemical analysis are of interest as are the development of new chromatographic techniques or uses in analytical chemistry. These include the extraction of thermodynamic and kinetic quantities from the degree of distortion of elution peak profile shapes. Computer simulations are used to obtain a clearer understanding of how to interpret data.

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

R. C. Barber, P. J. Karol, H. Nakahara, E. Vardaci and E. Vogt, “Discovery of the Elements with Atomic Number ≥ 113”, Pure Appl. Chem. (accepted 2010, in revision) R. C. Barber, H. Gäggeler, P. J. Karol, H. Nakahara, E. Vardaci and E. Vogt, “Discovery of the Element with Atomic Number 112”, Pure Appl. Chem. 81, 1331 (2009) P. J. Karol, H. Nakahara, B. W. Petley and E. Vogt, “On the Claims for Discovery of Elements 110, 111, 112, 114, 116, and 118”, Pure Appl. Chem. 75, 1601 (2003) P. J. Karol, “The Mendeleev-Seaborg Periodic Table: Through Z = 1138 and Beyond”, J. Chem. Educ. 79, 60 (2002) D. A. Holder, B. G. Johnson, and P. J. Karol, “A Consistent Set of Oxidation Number Rules for Intelligent Computer Programming”, J. Chem. Educ. 79, 465 (2002) P. J. Karol, H. Nakahara, B. W. Petley and E. Vogt, “On the Discovery of the Elements 110-112”, Pure Appl. Chem. 73, 959 (2001)

推荐链接
down
wechat
bug