当前位置: X-MOL首页全球导师 海外导师 › Wunderlich, Zeba

研究领域

Understanding the organization of regulatory information in the genome The Wunderlich lab is interested in studying how regulatory information — when, where, and to what level genes are expressed — is encoded in animal genomes, with the ultimate goal of being able to understand how changes in the sequence of regulatory DNA, e.g. promoters and enhancers, will affect phenotype. Proper gene expression is necessary for the development of an organism from embryo to adult, and mis-regulation of gene expression is implicated in many diseases. As a model system, the lab uses different species and strains of Drosophila and studies transcription regulation of early embryogenesis. The lab uses cellular resolution imaging of gene expression, computational modeling, and genetic manipulations to understand how different sequences of regulatory DNA lead to different functions. This work has uncovered compensatory evolution between multiple pieces of regulatory DNA controlling single genes to maintain proper gene expression patterns and suggests that understanding the mechanism by which many pieces of regulatory DNA . The lab is also developing new model systems to explore how sequence variation between individuals and species affects gene expression.

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

MV Staller, Meghan DJ Bragdon, Z Wunderlich, J Estrada, AH DePace. A gene expression atlas of a bicoid-depleted Drosophila embryo reveals early canalization of cell fate. Development. (2015). MV Staller, BJ Vincent, Meghan DJ Bragdon, Z Wunderlich, J Estrada, AH DePace. Shadow enhancers enable Hunchback bifunctionality in the Drosophila embryo. PNAS. (2015). Z Wunderlich, MD Bragdon, and AH DePace. Comparing mRNA levels using in situ hybridization of a target gene and co-stain. Elsevier Methods. (2014). Z Wunderlich, MD Bragdon, K Eckenrode, T Martin, S Pearl, and AH DePace. Dissecting sources of quantitative gene expression pattern divergence between Drosophila species. Molecular Systems Biology. (2012). MV Staller, D Yan, S Randklev, MD Bragdon, Z Wunderlich, R Tao, LA Perkins, AH DePace, N Perrimon. Depleting gene Activities in Early Drosophila Embryos with the “maternal-Gal4 – shRNA” system. Genetics. (2012). Z Wunderlich, AH DePace. Modeling transcriptional networks in Drosophila development at multiple scales. Current Opinion in Genetics and Development. (2011). CC Fowlkes*, K Eckenrode*, MD Bragdon*, M Meyer, Z Wunderlich, L Simirenko, CL Luengo Hendriks, SVE Keränen, C Henriquez, DW Knowles, MD Biggin, MB Eisen, AH DePace. A conserved developmental patterning network produces quantitatively different output in multiple species of Drosophila. PLoS Genetics. (2011).

推荐链接
down
wechat
bug