个人简介
Ph.D., University of Oregon
Postdoctoral Fellow, Yale University
研究领域
Bioorganic & Chemical Biology/Sensors/Probes & Imaging
Dr. Waggoner's research group creates fluorescence-based detection systems for biology and biotechnology. The cyanine dye fluorescent labeling reagents developed in the laboratory have become widely used in industry and academic research for multicolor analysis of proteins, nucleic acids, cells and tissues by imaging and flow cytometry. The laboratory has participated in a wide range of research projects. As part of a NASA funded project we produced a panel of fluorescent reagents and an imaging system, which detected sparse microbial life in the extreme environment of the Atacama desert. We are also developing new fluorescent reagents to monitor cellular electrical potential and ion fluxes to study the cardiac function of living mammalian hearts.
Dr. Waggoner is currently leading the Molecular Biosensor and Imaging Center into creating a novel sensor unit technology for a broad class of biosensors. We envision this technology will provide a very powerful, and almost generic, tool for detecting protein interactions on and inside living cells. The sensor units are generated by combining engineered, cell-expressed target-binding proteins and environmentally sensitive fluorescent dyes that report target binding. Multiple sensors can be expressed simultaneously to sensitively and rapidly detect several targets within individual cells.
These sensor units are being incorporated into intracellular sensors, sensor particles and optical fiber sensors for interstitial spaces in tissues, sensors on chips for in vitro assays, and sensors for high throughput automated homogeneous assays in pharmaceutical drug discovery.
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Armitage BA. Analysis of PNA Hybridization by Surface Plasmon Resonance. Methods Mol Biol. 2014;1050:159-65. doi: 10.1007/978-1-62703-553-8_13. PubMed PMID: 24297358.
Armitage BA. Formation and Characterization of PNA-Containing Heteroquadruplexes. Methods Mol Biol. 2014;1050:73-82. doi: 10.1007/978-1-62703-553-8_6. PubMed PMID: 24297351.
Gallo E, Jarvik J. Fluorogen-Activating scFv Biosensors Target Surface Markers on Live Cells Via Streptavidin or Single-Chain Avidin. Molecular Biotechnology (2014), DOI:10.1007/s12033-014-9732-6.
Gallo E, Vasilev KV, Jarvik J. Fluorogen-activating-proteins as universal affinity biosensors for immunodetection. Biotechnology and Bioengineering (2014), 111(3), 475-484. DOI:10.1002/bit.25127.
Goldman JM, Zhang LA, Manna A, Armitage BA, Ly DH, Schneider JW. High affinity gPNA sandwich hybridization assay for rapid detection of short nucleic acid targets with single mismatch discrimination. Biomacromolecules (2013), 14(7), 2253-2261. DOI:10.1021/bm400388a.
Gupta A, Lee L-L, Roy S, Tanious FA, Wilson WD, Ly DH, Armitage BA. Strand Invasion of DNA Quadruplexes by PNA: Comparison of Homologous and Complementary Hybridization. ChemBioChem (2013), 14(12):1476-1484. DOI:10.1002/cbic.201300263.
Lan L, Nakajima S, Wei L, Sun L, Hsieh C-L, Sobol RW, Bruchez M, Van Houten B, Yasui A, Levine, AS. Novel method for site-specific induction of oxidative DNA damage reveals differences in recruitment of repair proteins to heterochromatin and euchromatin. Nucleic Acids Research (2014), 42(4), 2330-2345. DOI:10.1093/nar/gkt1233.
Pastori C, Diomede L, Venuti A, Fisher G, Jarvik J, Bomsel M, Sanvito F, Lopalco L. Induction of HIV-blocking anti-CCR5 IgA in Peyers's patches without histopathological alterations. J Virol. 2014 Apr;88(7):3623-35. doi: 10.1128/JVI.03663-13. Epub 2014 Jan 8. PMID: 24403594.
Patrick MJ, Janjic JM, Teng H, O'Hear MR, Brown CW, Stokum JA, Schmidt BF, Ahrens ET, Waggoner AS. Intracellular pH Measurements Using Perfluorocarbon Nanoemulsions. Journal of the American Chemical Society (2013), 135(49), 18445-18457. DOI:10.1021/ja407573m.
Saunders MJ, Block E, Sorkin A, Waggoner AS, Bruchez, MP. A Bifunctional Converter: Fluorescein Quenching scFv/Fluorogen Activating Protein for Photostability and Improved Signal to Noise in Fluorescence Experiments. Bioconjugate Chemistry (2014), 25(8), 1556-1564. DOI:10.1021/bc500273n.
Schneider JW, Goldman JM, Armitage BA, Ly DH. miRNA detection using alkylated g-PNAs and ultrabright flurorescent tags in capillary electrophoresis. 87th ACS Colloid and Surface Science Symposium, Riverside, CA, United States, June 23-26 (2013), COLLSYMP-66.
Shank NI, Pham HH, Waggoner AS, Armitage BA. Twisted Cyanines: A Non-Planar Fluorogenic Dye with Superior Photostability and its Use in a Protein-Based Fluoromodule. Journal of the American Chemical Society (2013), 135(1), 242-251. DOI:10.1021/ja308629w.
Tan C, Saurabh S, Bruchez MP, Schwartz R, Le Duc P. Reply to 'Complexity of molecular crowding in cell-free enzymatic reaction networks'. Nature Nanotechnology (2014), 9(6), 407-408. DOI:10.1038/nnano.2014.111.
Tan X, Dey SK, Telmer C, Zhang X, Armitage BA, Bruchez MP. Aptamers Act as Activators for the Thrombin Mediated-Hydrolysis of Peptide Substrates. ChemBioChem (2014), 15(2), 205-208. DOI:10.1002/cbic.201300693.
Thomas SM, Sahu B, Rapireddy S, Bahal R, Wheeler SE, Procopio EM, Kim J, Joyce SC, Contrucci S, Wang Y, et al. Antitumor Effects of EGFR Antisense Guanidine-Based Peptide Nucleic Acids in Cancer Models. ACS Chemical Biology (2013), 8(2), 345-352. DOI:10.1021/cb3003946.
Wu Y, Tapia PH, Jarvik J, Waggoner AS, Sklar LA. Real-time detection of protein trafficking with high-throughput flow cytometry (HTFC) and fluorogen-activating protein (FAP) base biosensor. Curr Protoc Cytom. (2014) 67:Unit 9.43. doi: 10.1002/0471142956.cy0943s67. PMID: 24510772.
Yan Q, Schwartz SL, Maji S, Huang F, Szent-Gyorgyi C, Lidke DS, Lidke KA, Bruchez MP. Localization Microscopy using Noncovalent Fluorogen Activation by Genetically Encoded Fluorogen-Activating Proteins. ChemPhysChem (2014), 15(4), 687-695. DOI:10.1002/cphc.201300757.
Youker RT, Teng H. Measuring protein dynamics in live cells: protocols and practical considerations for fluorescence fluctuation microscopy. J. Biomed. Opt. (2014) 19(9):090801. DOI:10.1117/1.JBO.19.9.090801.
Bachert C, Linstedt AD. A sensor of protein O-glycosylation based on sequential processing in the Golgi apparatus. Traffic. 2013 Jan;14(1):47-56. doi: 10.1111/tra.12019. Epub 2012 Oct 31. PubMed PMID: 23046148; PubMed Central PMCID: PMC3548014.
Coelho LP, Kangas JD, Naik AW, Osuna-Highley E, Glory-Afshar E, Fuhrman M, Simha R, Berget PB, Jarvik JW, Murphy RF. Determining the subcellular location of new proteins from microscope images using local features. Bioinformatics. 2013 Sep 15;29(18):2343-9. doi: 10.1093/bioinformatics/btt392. Epub 2013 Jul 8. PubMed PMID: 23836142; PubMed Central PMCID: PMC3753569.