近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Associate Professor at NTHU (Jul. 2016-Feb. 2020): 28-43
Assistant Professor at NTHU (Aug. 2010-Jul. 2016): 14-27
Before joining NTHU: 1-13
43.Influence of lipid compositions in the events of retinal Schiff base of bacteriorhodopsin embedded in covalently circularized nanodiscs: Thermal isomerization, photoisomerization, and deprotonation Huang, H.-Y.; Syue, M.-L.; Chen, I-C.*; Yu, T.-Y.*; Chu, L.-K.* J. Phys. Chem. B 2019, 123, 9123.
42.Reply to “Comment on ‘Does tetrahydrofuran (THF) behave like a solvent or a reactant in the photolysis of thionyl chloride (Cl2SO) in cyclohexane? A transient infrared difference study’”
Shih, M.-C.; Chu, L.-K.* J. Phys. Chem. A 2019, 123, 7895.
41.Photochemistry of bacteriorhodopsin with various oligomeric statuses in controlled membrane
mimicking environments: A spectroscopic study from femtoseconds to milliseconds
Kao, Y.-M.; Cheng, C.-H.; Syue, M.-L.; Huang, H.-Y.; Chen, I-C.*; Yu, T.-Y.*; Chu, L.-K.* J. Phys. Chem. B 2019, 123, 2032.
40.Extracting the protein dynamics of bovine serum albumin in the native condition using confocal fluorescent temperature jump
Tseng, K.-C.; Chu, L.-K.* J. Appl. Phys. 2019, 125, 084701
39.Thermographic detection and analysis of the temporal and spatial evolution of temperature upon optical heating of gold nanorod assembly immobilized in agar
Ho, C.-Y.; Chu, L.-K.* ACS Omega 2018, 3, 16960.
38.Highly efficient transfer of 7TM membrane protein from native membrane to covalently circularized nanodisc
Yeh, V.; Lee, T.-Y.; Chen, C.-W.; Kuo, P.-C.; Shiue, J.; Chu, L.-K.*; Yu, T.-Y.* Sci. Rep. 2018, 8, 13501.
37.Radiative cooling of the surface-modified gold nanorods upon pulsed infrared photoexcitation
Guo, S.-S.; Chu, L.-K.* J. Phys. Chem. Lett. 2018, 9, 5110.
36.Does tetrahydrofuran (THF) behave like a solvent or a reactant in the photolysis of thionyl chloride (Cl2SO) in cyclohexane? A transient infrared difference study.
Shih, M.-C.; Chu, L.-K.* J. Phys. Chem. A 2018, 122, 5401.
35.Electrodeposited-film electrodes derived from a precursor dinitrosyl iron complex for electrocatalytic water splitting
Li, W.-L.; Chiou, T.-W.*; Chen, C.-H.; Yu, Y.-J.; Chu, L.-K.; Liaw, W.-F.* Dalton Trans. 2018, 47, 7128.
34.Spatially and temporally-resolved tryptophan fluorescence thermometry for monitoring the
photothermal processes of gold nanorod suspensions
Lin, C.-T.; Chen, K.-J.; Tseng, K.-C.; Chu, L.-K.* Sens. Actuators B Chem. 2018, 255, Part 2, 1285.
33.Using SiO2-coated gold nanorods as temperature jump photothermal convertors coupled with a confocal fluorescent thermometer to study protein unfolding kinetics: A case of bovine serum albumin
Chen, K.-J.; Lin, C.-T.; Tseng, K.-C.; Chu, L.-K.* J. Phys. Chem. C 2017, 121, 14981.
32.A molecular design of highly efficient thermally activated delayed fluorescence hosts for blue phosphorescent and fluorescent organic light-emitting diodes
Lin, C.-C.; Huang, M.-J.; Chiu, M.-J.; Huang, M.-P.; Chang, C.-C.; Liao, C.-Y.; Chiang, K.-M.; Shiau, Y.-J. ;Chou, T.-Y.; Chu, L.-K.; Lin, H.-W.; Cheng, C.-H.* Chem. Mat. 2017, 29, 1527.
31.Distance-dependent excited-state electron transfer from tryptophan to gold nanoparticles through polyproline helices
Lai, Y.-C.; Lin, C.-Y.; Chung, M.-R.; Hung, P.-Y.; Horng, J.-C.*; Chen, I-C.; Chu, L.-K.* J. Phys. Chem. C 2017, 121, 4882.
30.Monitoring the transient thermal infrared emission of gold nanoparticles upon photoexcitation with a step-scan Fourier-transform spectrometer
Liu, J.-L.; Yang, Y.-T.; Lin, C.-T.; Yu, Y.-J.; Chen, J.-K.; Chu, L.-K.* J. Phys. Chem. C 2017, 121, 878.
29.Lipids influence the proton pump activity of photosynthetic protein embedded in nanodiscs
Yeh, V.; Hsin, Y.; Lee, T.-Y.; Chan, J. C. C.; Yu, T.-Y.*; Chu, L.-K.* RSC Adv. 2016, 6, 88300.
28.Wavelength-dependent photocycle activity of xanthorhodopsin in the visible region
Chiang, H.-K.; Chu, L.-K.* Biochem. Biophys. Rep. 2016, 7, 347.
27.A new molecular design based on thermally activated delayed fluorescence for highly efficient organic light emitting diodes Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Huang, P.-Y.; Huang, M.-J.; Ren-Wu, C.-Z.; Yang, C.-Y.; Chiu, M.-J.; Chu, L.-K.; Lin, H.-W.; Cheng, C.-H.* J. Am. Chem. Soc. 2016, 138, 628.
26.Terminal aromatic-proline interactions on polyproline conformation: Thermodynamic and kinetic studies
Lin, Y.-J.; Chu, L.-K.; Horng, J.-C.* J. Phys. Chem. B 2015, 119, 15796.
25.Development of a dinitrosyl iron complex molecular catalyst into a hydrogen evolution cathode
Chiou, T.-W.*; Lu, T.-T.*; Wu, Y.-H.; Yu, Y.-J.; Chu, L.-K.; Liaw, W.-F.* Angew. Chem. Int. Ed. 2015, 54, 14824.
24.Tuning the photocycle kinetics of bacteriorhodopsin in lipid nanodiscs
Lee, T.-Y.;# Yeh, V.;# Chuang, J.; Chan, J.; Chu, L.-K.*; Yu, T.-Y.* Biophys. J. 2015, 109, 1899.
23.Quantifying the photothermal efficiency of gold nanoparticles using tryptophan as an in situ
fluorescent thermometer
Chiu, M.-J.; Chu, L.-K.* Phys. Chem. Chem. Phys. 2015, 17, 17090.
22.A high triplet energy, high thermal stability oxadiazole derivative as the electron transporter for highly efficient red, green and blue phosphorescent OLEDs
Shih, C.-H.; Rajamalli, P.; Wu, C.-A.; Chiu, M.-J.; Chu, L.-K.; Cheng, C.-H.* J. Mat. Chem. C 2015, 3, 1491.
21.Analyzing a steady-state phenomenon using an ensemble of sequential transient events: A proof of concept on photocurrent of bacteriorhodopsin upon continuous photoexcitation
Hung, C.-W.; Ho, C.-H.; Chu, L.-K.* J. Appl. Phys. 2014, 116, 144701.
20.Highly efficient orange and deep-red organic light emitting diodes with long operational lifetime using carbazole-quinoline based bipolar host materials
Chen, C.-H.; Hsu, L.-C.; Rajamalli, P.; Chang, Y.-W.; Wu, F.-I.; Liao, C.-Y.; Chiu, M.-J.; Chou, P.-Y.; Huang, M.-J.; Chu, L.-K.; Cheng, C.-H.* J. Mat. Chem. C 2014, 2, 6183.
19.Photochemistry of a dual-bacteriorhodopsin system in H. marismortui: HmbRI and HmbRII
Tsai, F.-K.; Fu, H.-Y.; Yang, C.-S.; Chu, L.-K.* J. Phys. Chem. B 2014, 118, 7290.
18.Modeling of photocurrent kinetics upon pulsed photoexcitation of photosynthetic proteins: A case of bacteriorhodopsin
Kuo, C.-L.; Chu, L.-K.* Bioelectrochemistry 2014, 99, 1.
17.Solvent isotope effect on the dark adaptation of bacteriorhodopsin in purple membrane: Viewpoints of kinetics and thermodynamics
Chiang, H.-K.; Chu, L.-K.* J. Phys. Chem. B 2014, 118, 2662.
16.Mini Review: Transient infrared absorption spectra of reaction intermediates detected with a step-scan Fourier-transform infrared spectrometer
Huang, Y.-H.; Chen, J.-D.; Hsu, K.-H.; Chu, L.-K.*; Lee, Y.-P.* J. Chin. Chem. Soc. 2014, 61, 47.
15.Effects of surfactants on the purple membrane and bacteriorhodopsin: Solubilization or aggregation?
Ng, K. C.; Chu, L.-K.* J. Phys. Chem. B 2013, 117, 6241.
14.Study of the reactive excited-state dynamics of delipidated bacteriorhodopsin upon surfactant treatments
Cheng, C.-W.; Lee, Y.-P.*; Chu, L.-K.* Chem. Phys. Lett. 2012, 539-540, 151.
13.Transient infrared spectra of CH3SOO and CH3SO observed with step-scan Fourier-transform spectroscopy
Chu, L.-K.; Lee, Y.-P. J. Chem. Phys. 2010, 133, 184303.
12.On the mechanism of the plasmonic field enhancement of the solar-to-electric energy conversion by the other photosynthetic system in nature (Bacteriorhodopsin): Kinetic and spectroscopic study
Chu, L.-K.¶; Yen, C.-W.¶; El-Sayed, M. A. J. Phys. Chem. C 2010, 114, 15358.
11.Bacteriorhodopsin-based photo-electrochemical cell
Chu, L.-K.; Yen, C.-W.; El-Sayed, M. A. Biosens. Bioelectron. 2010, 26, 620.
10.Plasmonic field enhancement of the bacteriorhodopsin photocurrent during its proton pump photocycle
Yen, C.-W.; Chu, L.-K.; El-Sayed, M. A. J. Am. Chem. Soc. 2010, 132, 7250.
9.Kinetics of the M intermediate in the photocycle of bacteriorhodopsin upon chemical modification with surfactants
Chu, L.-K.; El-Sayed, M. A. Photochem. Photobiol. 2010, 86, 316.
8.Bacteriorhodopsin O-state photocycle kinetics: A surfactant study
Chu, L.-K.; El-Sayed, M. A. Photochem. Photobiol. 2010, 86, 70.
7.Infrared absorption of gaseous c-ClCOOH and t-ClCOOH detected with a step-scan Fourier-transform spectrometer
Chu, L.-K.; Lee, Y.-P. J. Chem. Phys. 2009, 130, 174304.
6.The ν7, ν8, and ν11 bands of propynal, C2HCHO, in the 650 cm−1 region
McKellar, A. R. W.; Watson, J. K. G.; Chu, L.-K.; Lee, Y.-P. J. Mol. Spec. 2008, 252, 230.
5.Infrared absorption of gaseous CH3OO detected with a step-scan Fourier-transform spectrometer
Huang, D.-R.; Chu, L.-K.; Lee, Y.-P. J. Chem. Phys. 2007, 127, 234318.
4.Infrared absorption of gaseous ClCS detected with time-resolved Fourier-transform spectroscopy
Chu, L.-K.; Han, H.-L.; Lee, Y.-P. J. Chem. Phys. 2007, 126, 174310.
3.Infrared absorption of C6H5SO2 detected with time-resolved Fourier-transform spectroscopy
Chu, L.-K.; Lee, Y.-P. J. Chem. Phys. 2007, 126, 134311.
2.Infrared absorption of CH3SO2 detected with time-resolved Fourier-transform spectroscopy
Chu, L.-K.; Lee, Y.-P. J. Chem. Phys. 2006, 124, 244301.
1.Detection of ClSO with time-resolved Fourier-transform infrared absorption spectroscopy
Chu, L.-K.; Lee, Y.-P.; Jiang, E. Y. J. Chem. Phys. 2004, 120, 3179.