当前位置: X-MOL首页全球导师 国内导师 › 朱立岡

个人简介

學歷: 國立清華大學博士 (2006) 國立清華大學學士 (2000) 經歷: 2016~國立清華大學副教授 2010~2016國立清華大學助理教授 2008~2010博士後研究:美國喬治亞理工學院 2006~2008博士後研究:國立清華大學

研究领域

生物物理、物理化學、光譜學

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Associate Professor at NTHU (Jul. 2016-Feb. 2020): 28-43 Assistant Professor at NTHU (Aug. 2010-Jul. 2016): 14-27 Before joining NTHU: 1-13 43.Influence of lipid compositions in the events of retinal Schiff base of bacteriorhodopsin embedded in covalently circularized nanodiscs: Thermal isomerization, photoisomerization, and deprotonation Huang, H.-Y.; Syue, M.-L.; Chen, I-C.*; Yu, T.-Y.*; Chu, L.-K.* J. Phys. Chem. B 2019, 123, 9123. 42.Reply to “Comment on ‘Does tetrahydrofuran (THF) behave like a solvent or a reactant in the photolysis of thionyl chloride (Cl2SO) in cyclohexane? A transient infrared difference study’” Shih, M.-C.; Chu, L.-K.* J. Phys. Chem. A 2019, 123, 7895. 41.Photochemistry of bacteriorhodopsin with various oligomeric statuses in controlled membrane mimicking environments: A spectroscopic study from femtoseconds to milliseconds Kao, Y.-M.; Cheng, C.-H.; Syue, M.-L.; Huang, H.-Y.; Chen, I-C.*; Yu, T.-Y.*; Chu, L.-K.* J. Phys. Chem. B 2019, 123, 2032. 40.Extracting the protein dynamics of bovine serum albumin in the native condition using confocal fluorescent temperature jump Tseng, K.-C.; Chu, L.-K.* J. Appl. Phys. 2019, 125, 084701 39.Thermographic detection and analysis of the temporal and spatial evolution of temperature upon optical heating of gold nanorod assembly immobilized in agar Ho, C.-Y.; Chu, L.-K.* ACS Omega 2018, 3, 16960. 38.Highly efficient transfer of 7TM membrane protein from native membrane to covalently circularized nanodisc Yeh, V.; Lee, T.-Y.; Chen, C.-W.; Kuo, P.-C.; Shiue, J.; Chu, L.-K.*; Yu, T.-Y.* Sci. Rep. 2018, 8, 13501. 37.Radiative cooling of the surface-modified gold nanorods upon pulsed infrared photoexcitation Guo, S.-S.; Chu, L.-K.* J. Phys. Chem. Lett. 2018, 9, 5110. 36.Does tetrahydrofuran (THF) behave like a solvent or a reactant in the photolysis of thionyl chloride (Cl2SO) in cyclohexane? A transient infrared difference study. Shih, M.-C.; Chu, L.-K.* J. Phys. Chem. A 2018, 122, 5401. 35.Electrodeposited-film electrodes derived from a precursor dinitrosyl iron complex for electrocatalytic water splitting Li, W.-L.; Chiou, T.-W.*; Chen, C.-H.; Yu, Y.-J.; Chu, L.-K.; Liaw, W.-F.* Dalton Trans. 2018, 47, 7128. 34.Spatially and temporally-resolved tryptophan fluorescence thermometry for monitoring the photothermal processes of gold nanorod suspensions Lin, C.-T.; Chen, K.-J.; Tseng, K.-C.; Chu, L.-K.* Sens. Actuators B Chem. 2018, 255, Part 2, 1285. 33.Using SiO2-coated gold nanorods as temperature jump photothermal convertors coupled with a confocal fluorescent thermometer to study protein unfolding kinetics: A case of bovine serum albumin Chen, K.-J.; Lin, C.-T.; Tseng, K.-C.; Chu, L.-K.* J. Phys. Chem. C 2017, 121, 14981. 32.A molecular design of highly efficient thermally activated delayed fluorescence hosts for blue phosphorescent and fluorescent organic light-emitting diodes Lin, C.-C.; Huang, M.-J.; Chiu, M.-J.; Huang, M.-P.; Chang, C.-C.; Liao, C.-Y.; Chiang, K.-M.; Shiau, Y.-J. ;Chou, T.-Y.; Chu, L.-K.; Lin, H.-W.; Cheng, C.-H.* Chem. Mat. 2017, 29, 1527. 31.Distance-dependent excited-state electron transfer from tryptophan to gold nanoparticles through polyproline helices Lai, Y.-C.; Lin, C.-Y.; Chung, M.-R.; Hung, P.-Y.; Horng, J.-C.*; Chen, I-C.; Chu, L.-K.* J. Phys. Chem. C 2017, 121, 4882. 30.Monitoring the transient thermal infrared emission of gold nanoparticles upon photoexcitation with a step-scan Fourier-transform spectrometer Liu, J.-L.; Yang, Y.-T.; Lin, C.-T.; Yu, Y.-J.; Chen, J.-K.; Chu, L.-K.* J. Phys. Chem. C 2017, 121, 878. 29.Lipids influence the proton pump activity of photosynthetic protein embedded in nanodiscs Yeh, V.; Hsin, Y.; Lee, T.-Y.; Chan, J. C. C.; Yu, T.-Y.*; Chu, L.-K.* RSC Adv. 2016, 6, 88300. 28.Wavelength-dependent photocycle activity of xanthorhodopsin in the visible region Chiang, H.-K.; Chu, L.-K.* Biochem. Biophys. Rep. 2016, 7, 347. 27.A new molecular design based on thermally activated delayed fluorescence for highly efficient organic light emitting diodes Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Huang, P.-Y.; Huang, M.-J.; Ren-Wu, C.-Z.; Yang, C.-Y.; Chiu, M.-J.; Chu, L.-K.; Lin, H.-W.; Cheng, C.-H.* J. Am. Chem. Soc. 2016, 138, 628. 26.Terminal aromatic-proline interactions on polyproline conformation: Thermodynamic and kinetic studies Lin, Y.-J.; Chu, L.-K.; Horng, J.-C.* J. Phys. Chem. B 2015, 119, 15796. 25.Development of a dinitrosyl iron complex molecular catalyst into a hydrogen evolution cathode Chiou, T.-W.*; Lu, T.-T.*; Wu, Y.-H.; Yu, Y.-J.; Chu, L.-K.; Liaw, W.-F.* Angew. Chem. Int. Ed. 2015, 54, 14824. 24.Tuning the photocycle kinetics of bacteriorhodopsin in lipid nanodiscs Lee, T.-Y.;# Yeh, V.;# Chuang, J.; Chan, J.; Chu, L.-K.*; Yu, T.-Y.* Biophys. J. 2015, 109, 1899. 23.Quantifying the photothermal efficiency of gold nanoparticles using tryptophan as an in situ fluorescent thermometer Chiu, M.-J.; Chu, L.-K.* Phys. Chem. Chem. Phys. 2015, 17, 17090. 22.A high triplet energy, high thermal stability oxadiazole derivative as the electron transporter for highly efficient red, green and blue phosphorescent OLEDs Shih, C.-H.; Rajamalli, P.; Wu, C.-A.; Chiu, M.-J.; Chu, L.-K.; Cheng, C.-H.* J. Mat. Chem. C 2015, 3, 1491. 21.Analyzing a steady-state phenomenon using an ensemble of sequential transient events: A proof of concept on photocurrent of bacteriorhodopsin upon continuous photoexcitation Hung, C.-W.; Ho, C.-H.; Chu, L.-K.* J. Appl. Phys. 2014, 116, 144701. 20.Highly efficient orange and deep-red organic light emitting diodes with long operational lifetime using carbazole-quinoline based bipolar host materials Chen, C.-H.; Hsu, L.-C.; Rajamalli, P.; Chang, Y.-W.; Wu, F.-I.; Liao, C.-Y.; Chiu, M.-J.; Chou, P.-Y.; Huang, M.-J.; Chu, L.-K.; Cheng, C.-H.* J. Mat. Chem. C 2014, 2, 6183. 19.Photochemistry of a dual-bacteriorhodopsin system in H. marismortui: HmbRI and HmbRII Tsai, F.-K.; Fu, H.-Y.; Yang, C.-S.; Chu, L.-K.* J. Phys. Chem. B 2014, 118, 7290. 18.Modeling of photocurrent kinetics upon pulsed photoexcitation of photosynthetic proteins: A case of bacteriorhodopsin Kuo, C.-L.; Chu, L.-K.* Bioelectrochemistry 2014, 99, 1. 17.Solvent isotope effect on the dark adaptation of bacteriorhodopsin in purple membrane: Viewpoints of kinetics and thermodynamics Chiang, H.-K.; Chu, L.-K.* J. Phys. Chem. B 2014, 118, 2662. 16.Mini Review: Transient infrared absorption spectra of reaction intermediates detected with a step-scan Fourier-transform infrared spectrometer Huang, Y.-H.; Chen, J.-D.; Hsu, K.-H.; Chu, L.-K.*; Lee, Y.-P.* J. Chin. Chem. Soc. 2014, 61, 47. 15.Effects of surfactants on the purple membrane and bacteriorhodopsin: Solubilization or aggregation? Ng, K. C.; Chu, L.-K.* J. Phys. Chem. B 2013, 117, 6241. 14.Study of the reactive excited-state dynamics of delipidated bacteriorhodopsin upon surfactant treatments Cheng, C.-W.; Lee, Y.-P.*; Chu, L.-K.* Chem. Phys. Lett. 2012, 539-540, 151. 13.Transient infrared spectra of CH3SOO and CH3SO observed with step-scan Fourier-transform spectroscopy Chu, L.-K.; Lee, Y.-P. J. Chem. Phys. 2010, 133, 184303. 12.On the mechanism of the plasmonic field enhancement of the solar-to-electric energy conversion by the other photosynthetic system in nature (Bacteriorhodopsin): Kinetic and spectroscopic study Chu, L.-K.¶; Yen, C.-W.¶; El-Sayed, M. A. J. Phys. Chem. C 2010, 114, 15358. 11.Bacteriorhodopsin-based photo-electrochemical cell Chu, L.-K.; Yen, C.-W.; El-Sayed, M. A. Biosens. Bioelectron. 2010, 26, 620. 10.Plasmonic field enhancement of the bacteriorhodopsin photocurrent during its proton pump photocycle Yen, C.-W.; Chu, L.-K.; El-Sayed, M. A. J. Am. Chem. Soc. 2010, 132, 7250. 9.Kinetics of the M intermediate in the photocycle of bacteriorhodopsin upon chemical modification with surfactants Chu, L.-K.; El-Sayed, M. A. Photochem. Photobiol. 2010, 86, 316. 8.Bacteriorhodopsin O-state photocycle kinetics: A surfactant study Chu, L.-K.; El-Sayed, M. A. Photochem. Photobiol. 2010, 86, 70. 7.Infrared absorption of gaseous c-ClCOOH and t-ClCOOH detected with a step-scan Fourier-transform spectrometer Chu, L.-K.; Lee, Y.-P. J. Chem. Phys. 2009, 130, 174304. 6.The ν7, ν8, and ν11 bands of propynal, C2HCHO, in the 650 cm−1 region McKellar, A. R. W.; Watson, J. K. G.; Chu, L.-K.; Lee, Y.-P. J. Mol. Spec. 2008, 252, 230. 5.Infrared absorption of gaseous CH3OO detected with a step-scan Fourier-transform spectrometer Huang, D.-R.; Chu, L.-K.; Lee, Y.-P. J. Chem. Phys. 2007, 127, 234318. 4.Infrared absorption of gaseous ClCS detected with time-resolved Fourier-transform spectroscopy Chu, L.-K.; Han, H.-L.; Lee, Y.-P. J. Chem. Phys. 2007, 126, 174310. 3.Infrared absorption of C6H5SO2 detected with time-resolved Fourier-transform spectroscopy Chu, L.-K.; Lee, Y.-P. J. Chem. Phys. 2007, 126, 134311. 2.Infrared absorption of CH3SO2 detected with time-resolved Fourier-transform spectroscopy Chu, L.-K.; Lee, Y.-P. J. Chem. Phys. 2006, 124, 244301. 1.Detection of ClSO with time-resolved Fourier-transform infrared absorption spectroscopy Chu, L.-K.; Lee, Y.-P.; Jiang, E. Y. J. Chem. Phys. 2004, 120, 3179.

推荐链接
down
wechat
bug