当前位置: X-MOL首页全球导师 海外导师 › Engebrecht, JoAnne

研究领域

Meiosis and checkpoint function in the C. elegans germ line Germ cells are specialized cells that undergo mitotic proliferation followed by meiosis and cellular differentiation to generate haploid gametes for sexual reproduction. We are investigating several aspects of germ line biology using the nematode, Caenorhabditis elegans and related nematodes. The C. elegans germ line is particularly amenable to these studies due to its unique structural organization, the molecular genetics of the system, and the high degree of conservation with genes and pathways in humans. We are currently investigating 1) how meiosis differs in males and females; 2) how unpaired sex chromosomes of the heterogametic sex repair double strand breaks and are hidden from the checkpoint machinery; and 3) how different checkpoint pathways interact to ensure the faithful transmission of the genome.

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Lawrence, K., E. C. Tapley, V. E. Cruz, Q. Li, K. Aung, K. C. Hart, T. U. Schwartz, D. A. Starr and J. Engebrecht (2016) LINC complexes promote homologous recombination in part through inhibition of non-homologous end joining. J Cell Biol 215, 801-822. Van, M. V., B. J. Larson and J. Engebrecht (2016) To break or not to break: sex chromosome hemizygosity during meiosis in Caenorhabditis. Genetics 204, 999-1013. Larson, B. J., M. V. Van, T. Nakayama and J. Engebrecht (2016) Plasticity in the meiotic epigenetic landscape of sex chromosomes in Caenorhabditis species. Genetics 203, 1641-1658. Lawrence, K. S., T. Chau and J. Engebrecht (2015) DNA damage response and spindle assembly checkpoint function throughout the cell cycle to ensure genomic integrity. PLoS Genet.11(4):e1005150. doi: 10.1371/journal.pgen.1005150. Checchi, P., K. Lawrence, M. Van, B. Larson and J. Engebrecht (2014) Pseudosynapsis and decreased stringency of meiotic repair pathway choice on the hemizygous sex chromosome of Caenorhabditis elegans males. Genetics 197, 543-560 Lawrence, K. S., and J. Engebrecht (2012). Slowing replication in preparation for reduction. PLoS Genetics 8(5):e1002715. Checchi, P. and J. Engebrecht (2011). Caenorhabditis elegans Histone Methyltransferase MET-2 Shields the Male X Chromosome from Checkpoint Machinery and Mediates Meiotic Sex Chromosome Inactivation. PlosGenetics 7(9): e1002267. Checchi, P. and J. Engebrecht (2011). Heteromorphic sex chromosomes: Navigating meiosis without a homologous partner. Mol Reprod Dev 78, 623-632. Jaramillo-Lambert A., Y. Harigaya, J. Vitt, A. Villeneuve, J. Engebrecht (2010). Meiotic errors activate checkpoints that improve gamete quality without triggering apoptosis in male germ cells. Curr Biol. 20, 2078-2089. Comment in Curr Biol. 20:R1014-1016. Jaramillo-Lambert, A., and J. Engebrecht (2010) A single unpaired and transcriptionally silenced X Chromosome locally precludes checkpoint signaling in the Caenorhabditis elegans germ line. Genetics (Epub ahead of print). Mendonsa, R. and J. Engebrecht (2009). Phosphatidylinositol-4,5-bisphosphate and phospholipase D-generated phosphatidic acid specify SNARE-mediated vesicle fusion for prospore membrane formation. Eukaryot. Cell 8, 1094-1105. Mendonsa, R. and J. Engebrecht (2009). Phospholipase D function in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1791, 970-974. Morishita, M. and J. Engebrecht (2008). Sorting signals within the Saccharomyces cerevisaie sporulation-specific dityrosine transporter, Dtr1p, C terminus promote Golgi-to-prospore membrane transport. Eukaryot. Cell 7, 1674-1684. Jaramillo-Lambert, A., M. Elefson, A. Villeneuve, and J. Engebrecht (2007). Differential timing of S phases, X chromosome replication and meiotic progression in the C. elegans germline. Dev. Biol. 308,206-221. Smolikov, S., A. Eizinger, K. Schild-Prufert, A. Hurlburt, K. McDonald, J. Engebrecht, A. Villeneuve, and M. Colaiacovo (2007). SYP-3 restricts synaptonemal complex assembly to bridge paired chromosome axes during meiosis in C. elegans. Genetics 176:2015-2025. Nakanishi, H., M. Morishita, C. E. Schwartz, A. Coluccio, J. Engebrecht and A. M. Neiman (2006). Phospholipase D and the SNARE, Sso1p, are necessary for vesicle fusion during sporulation in yeast. J. Cell Sci. 119, 1406-1415. Connolly, J., and J. Engebrecht (2006). The Arf-GAP Gcs1p is essential for sporulation and regulates the phospholipase D, Spo14p. Eukaryot. Cell. 5, 112-124. Morishita M., and J. Engebrecht (2005). End3p-mediated endocytosis is required for spore wall formation in Saccharomyces cerevisiae. Genetics 170, 1561-1574. Morishita, M., and J. Engebrecht (2005) Phospholipases and cell signaling in yeast. In: Cell Biology and Dynamics of Yeast Lipids, ed. Guenther Daum. Research Signpost 37, 161-177. Iwamoto, M., S. Fairclough, S. Rudge, and J. Engebrecht (2005). The Saccharomyces cerevisiae Sps1p regulates trafficking of enzymes required for spore wall synthesis. Eukaryot. Cell 4,536-44. Rudge, S., V. Sciorra, M. Iwamoto, C. Zhou, T. Strahl, A. Morris, J. Thorner, and J. Engebrecht (2004). Roles of phosphoinositides and of Spo14p (phospholipase D)-generated phosphatidic acid during yeast sporulation. Mol. Biol. Cell 15, 207-218. Engebrecht J. (2003). Cell signaling in yeast sporulation. Biochem. Biophys. Res. Commun. 306, 325-328.

推荐链接
down
wechat
bug