当前位置: X-MOL首页全球导师 海外导师 › Burgess, Sean

研究领域

Meiotic chromosome dynamics Work in my laboratory explores the dynamic chromosome events that occur during the process of meiosis and how these processes are integrated to achieve accurate chromosome segregation. Chromosome missegregation is one of the leading causes of birth defects in humans. We combine the use of a wide array of tools, including genetics, molecular biology, biochemistry and live-cell imaging using budding yeast Saccharomyces cerevisiae and zebrafish Danio rerio as a model system.

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Chu, DB and Burgess, SM. (2016). A computational approach to estimating nondisjunction frequency in Saccharomyces cerevisiae. G3 January 8, 2016; g3.115.024380 Schuster K, Leeke B, Meier M, Wang Y, Newman T, Burgess SM and Julia A. Horsfield. (2015). A neural crest origin for cohesinopathy heart defects. Hum. Mol. Genet. 24 (24):7005-7016. Lui DY, Cahoon CK, Burgess SM (2013) Multiple Opposing Constraints Govern Chromosome Interactions during Meiosis. PLoS Genet 9(1): e1003197 Ho, C-H and Burgess, SM (2011). Pch2 acts through Xrs2 and Tel1/ATM to modulate interhomolog bias and checkpoint function during meiosis. PLoS Genetics 7:e1002351 Wu HY, Ho HC, Burgess SM (2010). Mek1 kinase governs outcomes of meiotic recombination and the checkpoint response. Current Biology. 20:1707-1. Mell, JC, Wienholz BL, Salem AA, and Burgess, SM (2008) Sites of recombination are local determinants of meiotic homolog pairing in Saccharomyces cerevisiae. Genetics 179: 773-784. Mell, JC, Komachi, K, Hughes, O and Burgess, SM (2008) Cooperative interactions between pairs of homologous chromatids during meiosis in Saccharomyces cerevisiae. Genetics 179, 1125-1127 Wu, H-Y and Burgess, S.M. (2006). Two distinct surveillance mechanisms monitor meiotic chromosome metabolismm in budding yeast. Current Biol. 16, 2473-2479 Lui DY, Peoples-Holst TL, Mell JC, Wu HY, Dean E, Burgess SM. (2006). Analysis of close stable homolog juxtaposition during meiosis in mutants of Saccharomyces cerevisiae. Genetics 173:1207-22 Wu, H-Y and Burgess, S.M. (2006) Ndj1, a telomere associated protein, promotes meiotic recombination in budding yeast. Mol. Cell. Biol. 26: 3683. Peoples-Holst, T.L. and Burgess, S.M. (2005). Multiple branches of the meiotic recombination pathway contribute independently to homolog pairing and stable juxtaposition during meiosis in budding yeast. Genes & Development 19: 863-874. Peoples TL, Dean EW, Gonzalez O, Lambourne L and SM Burgess. (2002). Close, stable homolog juxtaposition during meiosis in budding yeast is dependent on meiotic recombination, occurs independent of synapsis and is distinct from DSB-independent pairing contacts. Genes & Development. 16: 1682-1695. Burgess, SM (2002). Homologous chromosome associations and nuclear organization in the budding yeast, Saccharomyces cerevisiae. In: Homology Effects. Advances in Genetics (v46). Academic Press. San Diego:49-90

推荐链接
down
wechat
bug