研究领域
Polymer chemistry, organic materials
Macromolecular Materials
Polymers are all around us, ranging from the commodity plastics we take for granted, like polystyrene (Styrofoam), to biological polymers such as DNA and proteins. In most cases commodity synthetic polymer are made with poor control over the structure of the underlying macromolecules, but with great flexibility over the incorporated functional groups. In contrast, biological macromolecules such as DNA and proteins are made with incredible control over the structure of the molecule, but naturally occurring biomolecules are limited in the scope of functional groups, to for instance to a relatively 4 base pairs in DNA or 20 amino acids for proteins. In our group we use techniques similar to those used to make simple commodity polymers, and apply these techniques to the synthesis of polymers with useful functional groups and complex architectures. The goal is to use industrially accessible syntheses to make materials with complexity and control over the structure approaching that of biological systems. Examples of the complex polymer architectures we can synthesize are shown below.
Target Materials & Synthesis
We target our macromolecules to given applications. These applications include performing organic transformations in an environmentally friendly polymeric "nanoreactor", protein engineering through protein polymer hybrids, CO2 capture and transformation, and the development of self healing materials. Examples of our target materials are highlighted.
In all cases we use the techniques of organic chemistry to create the desired polymeric structure. In most cases we use controlled radical polymerization (reversible deactivation radical polymerization) to synthesize the polymeric backbone, and we utilize high yield organic reactions, or click reactions to modify our polymers.
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
R. Falatach, C. McGlone, M. S. Al-Abdul-Wahid, S. Averick, R. C. Page, J. A. Berberich, D. Konkolewicz, ‘The Best of Both Worlds: Active Enzymes by Grafting-To followed by Grafting-From a Protein’ Chemical Communications 2015, DOI: 10.1039/C4CC09287B
M. C. Mackenzie, A. R. Shrivats, D. Konkolewicz, S. E. Averick, M. C. McDermott, J. O. Hollinger, K. Matyjaszewski, ‘Synthesis of Poly(meth)acrylates with Thioether and Tertiary Sulfonium Groups by ARGET ATRP and Their Use as siRNA Delivery Agents’, Biomacromolecules 2015, 16, 246-245, DOI: 10.1021/bm501449a.
D. Konkolewicz, P. Krys, K. Matyjaszewski, ‘Explaining Unexpected Data via Competitive Equilibria and Processes in Radical Reactions with Reversible Deactivation’ Accounts of Chemical Research 2014, 47, 3028-3036, DOI: 10.1021/ar500199u.
T. G. Ribelli, D. Konkolewicz, S. Bernhard, K. Matyjaszewski, ‘How are Radicals (Re)Generated in Photochemical ATRP?’ Journal of the American Chemical Society 2014, 136, 13303-13312, DOI: 10.1021/ja506379s.
T. G. Ribelli, D. Konkolewicz, X. Pan, K. Matyjaszewski, ‘Contribution of Photochemistry to Activator Regeneration in ATRP’ Macromolecules, 2014, 47, 6316–6321, DOI: 10.1021/ma501384q.
C. M. Hui, A. Dang, B. Chen, J. Yan, D. Konkolewicz, H. He, R. Ferebee, M. R. Bockstaller, K. Matyjaszewski*, ‘Effect of Thermal Self-Initiation on the Synthesis, Composition, and Properties of Particle Brush Materials’ Macromolecules 2014, 47,5501-5508, DOI: 10.1021/ma501319m.
S. M. Chin, H. He, D. Konkolewicz*, K. Matyjaszewski*, ‘Synthesis of triblock and multiblock methacrylate polymers and self-assembly of stimuli responsive triblock polymers’ Journal of Polymer Science, Part A: Polymer Chemistry 2014, 52, 2548–2555 DOI: 10.1002/pola.27271.
P. V. Mendonça, S. E. Averick, D. Konkolewicz, A. C. Serra, A. V. Popov, T. Guliashvili, K. Matyjaszewski*, J. F. J. Coelho*, ‘Straightforward ARGET ATRP for the Synthesis of Primary Amine Polymethacrylate with Improved Chain-End Functionality under Mild Reaction Conditions’ Macromolecules 2014, 47, 4615-4621, DOI: 10.1021/ma501007j.
P. V. Mendonça, D. Konkolewicz, S. E. Averick, A. C. Serra, A. V. Popov, T. Guliashvili, K. Matyjaszewski*, J. F. J. Coelho*, ‘Synthesis of cationic poly((3-acrylamidopropyl) trimethylammonium chloride) by SARA ATRP in ecofriendly solvent mixtures’ Polymer Chemistry 2014, 5, 5829-5836, DOI: 10.1039/C4PY00707G.
D. Konkolewicz, Y. Wang, P. Krys, M. Zhong, A. A. Isse, A. Gennaro, K. Matyjaszewski* ‘SARA ATRP or SET-LRP, End of Controversy?’, Polymer Chemistry 2014, 5, 4396-4417, DOI: 10.1039/C4PY00149D.
J. R. Gois, D. Konkolewicz, A. Popov, T. Guliashvili, K. Matyjaszewski*, A. C. Serra, J. Coelho*, ‘Improvement of the Control over SARA ATRP of 2-(Diisopropylamino)ethyl Methacrylate by Slow and Continuous Addition of Sodium Dithionite’ Polymer Chemistry 2014, 5, 4617-4626. DOI: 10.1039/C4PY00561A.
D. Konkolewicz, P. Krys, J.R. Góis, P. V. Mendonça, M. Zhong, Y. Wang, A. Gennaro, A. A. Isse, M. Fantin, K. Matyjaszewski*. ‘Aqueous RDRP in the Presence of Cu0: The Exceptional Activity of CuI Confirms the SARA ATRP Mechanism’ Macromolecules 2014, 47, 560-570, DOI: 10.1021/ma4022983.
D. Konkolewicz, Y. Wang, M. Zhong, P. Krys, A. A. Isse, A. Gennaro, K. Matyjaszewski*. ‘Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. A Critical Assessment of the SARA ATRP and SET-LRP Mechanisms.’, Macromolecules 2013, 46, 8749-8772, DOI: 10.1021/ma401243k. (Cover Article)
M. Zhong, Y. Wang, P. Krys, D. Konkolewicz, K. Matyjaszewski*. ‘Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. Kinetic Simulation’ Macromolecules 2013, 46, 3816-3827, DOI: 10.1021/ma4001513.
C.-H. Peng, M. Zhong, Y. Wang, Y. Kwak, Y. Zhang, W. Zhu, M. Tonge, J. Buback, S. Park, P. Krys, D. Konkolewicz, A. Gennaro, K. Matyjaszewski*. ‘Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. Activation of Alkyl Halides by Cu0’ Macromolecules 2013, 46, 3803-3815, DOI: 10.1021/ma400150a.
Y. Wang, M. Zhong, W. Zhu, C.-H. Peng, Y. Zhang, D. Konkolewicz, N. Bortolamei, A. A. Isse, A. Gennaro, K. Matyjaszewski*. ‘Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. Comproportionation–Disproportionation Equilibria and Kinetics’ Macromolecules 2013, 46, 3793-3802, DOI: 10.1021/ma400149t.
H. He, M. Zhong, D. Konkolewicz, K. Yacatto, T. Rappold, G. Sugar, N. E. David, J. Gelb, N. Kotwal, A. Merkle, K. Matyjaszewski. ‘Three-Dimensionally Ordered Macroporous Polymeric Materials by Colloidal Crystal Templating for Reversible CO2 Capture.’ Advanced Functional Materials 2013, 23, 4720–4728, DOI: 10.1002/adfm.201300401.
H. He, W. Li, M. Lamson, M. Zhong, D. Konkolewicz, C. M. Hui, K. Yaccato, T. Rappold, G. Sugar, N. E. David, K. Damodaran, S. Natesakhawat, H. Nulwala, K. Matyjaszewski*. “Porous polymers prepared via high internal phase emulsion polymerization for reversible CO2 capture” Polymer. 2014, 55, 385-394, DOI: 10.1016/j.polymer.2013.08.002.
H. He, M. Zhong, D. Konkolewicz, K. Yaccato, T. Rappold, G. Sugar, N. E. David, K. Matyjaszewski*. ‘Carbon Black Functionalized with Hyperbranched Polymers: Synthesis, Characterization, and Application in Reversible CO2 Capture.’ Journal of Materials Chemistry A 2013, 1, 6810-6821, DOI: 10.1039/C3TA10699C.
H. He, W. Li, M. Zhong, D. Konkolewicz, D. Wu, K. Yaccato, T. Rappold, G. Sugar, N. E. David, K. Matyjaszewski*, ‘Reversible CO2 capture with porous polymers using the humidity swing’, Energy & Environmental Science 2013, 6, 488-493, DOI: 10.1039/C2EE24139K.