近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
1. Blade-Cast Nonfullerene Organic Solar Cells in Air with Excellent Morphology, Efficiency, and Stability. Lin Zhang, Baojun Lin, Bo Hu, Xianbin Xu, and Wei Ma*,Advanced materials,2018, DOI:10.1002/adma.201800343. 2. Lewis Acid Doping Induced Synergistic Effects on Electronic and Morphological Structure for Donor and Acceptor in Polymer Solar Cells. Yan H.*; Chen J.; Zhou K.; Tang Y.; Meng X.; Xu X.; Ma W.*, Advanced Energy Materials, 2018-3-29, DOI: 10.1002/aenm.201703672. 3. Miscibility Driven Optimization of Nanostructures in Ternary Organic Solar Cells using Non-fullerene Acceptors. Naveed H. B.; Ma W.* ,Joule, 2018, 2(4), 621-641. 4. Alkyl Chain Regiochemistry of Benzotriazole‐Based Donor Polymers Influencing Morphology and Performances of Non‐Fullerene Organic Solar Cells. Chen S.; Zhang L.; Ma C.; Meng D.; Zhang J.; Zhang G.; Li Z.; Chow P.C.Y.; Ma W.*; Wang Z.; Wong K.S.; Ade H.; Yan H.*, Advanced Energy Materials, 2018-1-10, DOI: 10.1002/aenm.201702427. 5. From Alloy-Like to Cascade Blended Structure: Designing High-Performance All-Small-Molecule Ternary Solar Cells. Wang Z.; Zhu X.; Zhang J.; Lu K.*; Fang J.; Zhang Y.; Wang Z.; Zhu L.*; Ma W.*; Shuai Z.; Wei Z.*, Journal of the American Chemical Society, 2018, 40(4),1549-1556. 6. Fluorinated and Alkylthiolated Polymeric Donors Enable both Efficient Fullerene and Nonfullerene Polymer Solar Cells. Zhang G.; Xu X.; Bi Z.; Ma W.*; Tang D.; Li Y.; Peng Q.*, ADVANCED FUNCTIONAL MATERIALS, 2018, 28(10), DOI: 10.1002/adfm.201706404. 7. Realizing Over 13% Efficiency in Green-Solvent-Processed Nonfullerene Organic Solar Cells Enabled by 1,3,4-Thiadiazole-Based Wide-Bandgap Copolymers. Xu X.; Yu T.; Bi Z.; Ma W.*; Li Y.; Peng Q.*, ADVANCED MATERIALS, 2018,30(3), DOI: 10.1002/adma.201703973. 8. Morphology Analysis of Organic Solar Cells with Synchrotron Radiation Based Resonant Soft X-Ray Scattering. Wu, Yang; Wang, Zaiyu; Meng, Xiangyi; Ma, Wei*, PROGRESS IN CHEMISTRY, 2017, 29(1), 93-101. DOI: 10.7536/PC160444. 9. Triperylene Hexaimides Based All-Small-Molecule Solar Cells with an Efficiency over 6% and Open Circuit Voltage of 1.04 V. Liang, Ningning,Meng, Dong,Ma, Zetong,Kan, Bin,Meng, Xiangyi,Zheng, Zhong,Jiang, Wei,Li, Yan,Wan, Xiangjian,Hou, Jianhui*,Ma, Wei*,Chen, Yongsheng*,Wang, Zhaohui*,ADVANCED ENERGY MATERIALS,2017,7(6),DOI: 10.1002/aenm.201601664。 10. A universal approach to improve electron mobility without significant enlarging phase separation in IDT-based non-fullerene acceptor organic solar cells. Zhang, Lin; Lin, Baojun; Ke, Zhifan; Chen, Jianya; Li, Wanbin; Zhang, Maojie; Ma, Wei*, Nano Energy, 2017, 41: 609~617. 11. Enhancing the Photovoltaic Performance via Vertical Phase Distribution Optimization in Small Molecule:PC71BM Blends. Zhang Y.; Deng D.; Wang Z.; Wang Y.; Zhang J.; Fang J.; Yang Y.; Lu G.*; Ma W.*; Wei Z*, Advanced Energy Materials, 2017, 7(22). 12. Combining Energy Transfer and Optimized Morphology for Highly Efficient Ternary Polymer Solar Cells. Zhao, Fuwen; Li, Yang; Wang, Zaiyu; Yang, Yang; Wang, Zhen; He, Guiying; Zhang, Jianqi*; Jiang, Li; Wang, Taishan; Wei, Zhixiang*; Ma, Wei*; Li, Bao; Xia, Andong; Li, Yongfang; Wang, Chunru, Advanced Energy Materials, 2017, 7(13). 13. A Wide-Bandgap Donor Polymer for Highly Efficient Non-fullerene Organic Solar Cells with a Small Voltage Loss. Chen, Shangshang; Liu, Yuhang; Zhang, Lin; Chow, Philip C. Y.; Wang, Zheng; Zhang, Guangye; Ma, Wei*; Yan, He*, Journal of the American Chemical Society, 2017, 139(18): 6298~6301. 14. Highly Efficient Ternary-Blend Polymer Solar Cells Enabled by a Nonfullerene Acceptor and Two Polymer Donors with a Broad Composition Tolerance. Xiaopeng Xu, Zhaozhao Bi, Wei Ma*, Zishuai Wang, Wallace C. H. Choy*, Wenlin Wu, Guangjun Zhang, Ying Li, Qiang Peng*, Advanced Materials, 2017, 29(46). 15. Fused‐Ring Acceptors with Asymmetric Side Chains for High‐Performance Thick‐Film Organic Solar Cells. Shiyu Feng, Cai'e Zhang, Yahui Liu, Zhaozhao Bi, Zhe Zhang, Xinjun Xu*, Wei Ma*, Zhishan Bo*, Advanced Materials, 2017, 29(42). 16. High-performance nonfullerene polymer solar cells with open-circuit voltage over 1 V and energy loss as low as 0.54 eV. Qunping Fan, Zhuo Xu,Xia Guo*, Xiangyi Meng, Wanbin Li, Wenyan Su, Xuemei Ou, Wei Ma*, Maojie Zhang*, YongfangLi, Nano Energy, 2017, 40: 20-26. 17. From Binary to Ternary: Improving the External Quantum Efficiency of Small‐Molecule Acceptor‐Based Polymer Solar Cells with a Minute Amount of Fullerene Sensitization. Yu Chen, Yunpeng Qin, Yang Wu, Cheng Li, Huifeng Yao, Ningning Liang, Xiaochen Wang, Weiwei Li, Wei Ma*, Jianhui Hou*, Advanced Energy Materials, 2017, 7(17). 18. Tuning Energy Levels without Negatively Affecting Morphology: A Promising Approach to Achieving Optimal Energetic Match and Efficient Nonfullerene Polymer Solar Cells. Jianquan Zhang,Kui Jiang, Guofang Yang, Tingxuan Ma, Jing Liu, Zhengke Li, Joshua Yuk Lin Lai, Wei Ma*, He Yan*, Advanced Energy Materials, 2017, 7(15). 19. Two compatible nonfullerene acceptors with similar structures as alloy for efficient ternary polymer solar cells. Wenyan Su, Qunping Fan, Xia Guo, Xiangyi Meng, Zhaozhao Bi, Wei Ma*, Maojie Zhang*, YongfangLi, Nano Energy, 2017, 38: 510-517. 20. Room temperature processed polymers for high-efficient polymer solar cells with power conversion efficiency over 9%. Xunfan Liao, Lin Zhang, Lie Chen*, Xiaotian Hu, Qingyun Ai, Wei Ma*, Yiwang Chen*, Nano energy, 2017, 37: 32-39.