当前位置: X-MOL首页全球导师 海外导师 › Wu, David T.W.

个人简介

AB - Harvard University, Department of Chemistry PhD - University of California at Berkeley, Department of Chemistry Post-Doctoral Study - Cambridge University, Cavendish Laboratory and University of California at Santa Barbara, Department of Chemical Engineering and Materials Research Laboratory

研究领域

Simulation, Complex Materials

Technological and scientific advances in complex materials present many exciting challenges for the theoretician working in chemical engineering or chemistry. More than ever before, fundamental knowledge and control of microstructure can translate directly into materials with novel and superior properties. I believe a combination of analytical theory and computational research can be a highly effective way to acquire an understanding of these diverse materials. My research approach draws widely from both statistical mechanics and modern computational methods and is concerned with a broad range of materials. I am currently pursuing research in four areas: 1. Conformational Effects in Conducting Polymers. I am developing theoretical models for understanding the interplay of geometrical surface and polymer/polymer effects with conformational and conductive properties. 2. Statistical Mechanics of Powders. I am developing statistical mechanical approaches to understand the role of particle morphology, packing, and hysteresis in determining bulk properties. 3. Algorithms for Direct Simulation of Solid-Phase Coexistence. I am developing general algorithms that are expected to be of extensive use for solid phase coexistence. 4. Viral Morphogenesis: Programmed Self-Assembly. My research, involving theory and simulation, is aimed at elucidating the physical and mechanical role of subunit polymorphology in determining the final assembled structure.

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Sum A.K., Wu D.T., Yasuoka K. Energy science of clathrate hydrates: Simulation-based advances MRS Bull. 2011, 36, 205 - 210. Lu N., Zeidman B.D., Luck M.T., Wilson C.S., Wu D.T. A Monte Carlo paradigm for capillarity in porous media Geophysical Research Letters 2010, 37. Rutkevych P.P., Ramanarayan H., Wu D.T. Optimizing the computational efficiency of surface tension estimates in molecular dynamics simulations Computational Materials Science 2010, 49, S95 - S98. Lusk M.T., Wu D.T., Carr L.D. Graphene nanoengineering and the inverse Stone-Thrower-Wales defect Physical Review B 2010, 81. Walsh M.R., Koh C.A., Sloan E.D., Sum A.K., Wu D.T. Microsecond Simulations of Spontaneous Methane Hydrate Nucleation and Growth Science 2009, 326, 1095 - 1098.

推荐链接
down
wechat
bug