个人简介
Ph.D., Texas A&M University (2004)
Postdoctoral Fellow, The University of Texas at Austin (2004-2006)
研究领域
Analytical
Artificial Photosynthesis | Materials Chemistry | Bioanalytical Chemistry
Research Page
Our approach to the utilization of solar energy is to build a modular thin-film photoconversion model system using various solid-supported lipid structures. This effort is apparently inspired by Nature's tremendous success in building photosynthesis systems using these materials. With our biomimetic approach, fundamental parameters governing the photoconverting performance can be systematically studied and optimized. Efforts have been made more recently in this lab to understand the various roles lipids can potentially play in order to improve the photoconversion efficiency further. Our current research in materials chemistry focuses on phospholipid-based self assembly as well as physiochemical characterization of such assembled systems. By various the size, structure as well as other properties of these lipids, we’ve found it’s possible to build molecular assemblies with distinctive functionalities. Finally, one of our long-term research goals is to develop integrated chemical systems for sensitive biorecognition and detection. While it seems increasingly easy to achieve high-sensitivity detection nowadays, it remains difficult to do it inexpensively and reliably. Importantly, electrochemistry-based detection schemes also bear a great potential in simultaneous detection of multiple analytes. In this case, our experience in microfabrication and micropatterning comes in handy. Our current effort along this direction has been the development of a new, low-cost detection strategy for nanoparticles. If successful, this method can serve as a general analytical tool for characterizing the size of nanoparticles as well as interactions between nanoparticles.
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Liu, L. et al. “Effects of Oriented Surface Dipole on Photoconversion Efficiency in an Alkane/Lipid-Hybrid-Bilayer-Based Photovoltaic Model System.” ChemPhysChem, 2013, 2777-2785.
Liu, L.; Zhan, W. “Molecular Photovoltaic System Based on Fullerenes and Carotenoids Co-Assembled in Lipid/Alkanethiol Hybrid Bilayers.” Langmuir, 2012, 4877-4882.
Xie, H.; Jiang, K.; Zhan, W. “A Modular Molecular Photovoltaic System Based on Phospholipid/Alkanethiol Hybrid Bilayers: Photocurrent Generation and Modulation.” Phys. Chem. Chem. Phys., 2011, 17712-17721.
Song, N.; Zhu, H.; Jin, S.; Zhan, W.; Lian, T. “Poisson-Distributed Electron-Transfer Dynamics from Single Quantum Dots to C60 Molecules.” ACS Nano, 2011, 613-621.
Zhan et al. “Photocurrent Generation from Porphyrin/Fullerene Complexes Assembled in a Tethered Lipid Bilayer.” Langmuir, 2010, 15671-15679.
Jiang, K.; Xie, H.; Zhan, W. “Photocurrent Generation from Ru(bpy)32+ Immobilized on Phospholipid/Alkanethiol Hybrid Bilayers.” Langmuir, 2009, 11129-11136.
Zhan, W.; Jiang, K. “A Modular Photocurrent Generation System Based on Phospholipid-Assembled Fullerenes.”Langmuir, 2008, 13258-13261.
Yu, Y.; Zhan, W.; Albrecht-Schmitt, T. E. “[H2bipy]2[(UO2)6Zn2(PO3OH)4(PO4)4]·H2O: An Open-Framework Uranyl Zinc Phosphate Templated by Diprotonated 4,4´-bipyridyl.” Inorg. Chem., 2008, 9050-9054.
Alsobrook, A. N.; Zhan, W.; Albrecht-Schmitt, T. E. “On the Use of Bifunctional Phosphonates for the Preparation of Heterobimetallic 5f-3d Systems.” Inorg. Chem., 2008, 5177-5183.
Nelson, A. G. D.; Bray, T. H.; Zhan, W.; Albrecht-Schmitt, T. E. “Further Examples of the Failure of Surrogates to Properly Model the Structural and Hydrothermal Chemistry of Transuranium Elements: Insights Provided by Uranium and Neptunium Diphosphonates.” Inorg. Chem., 2008, 4945-4951.
Jiang, K.; Zhang, H.; Shannon, C.; Zhan, W. “Preparation and Characterization of Polyoxometalate/ Protein Ultrathin Films Grown on Electrode Surfaces Using Layer-by-Layer Assembly.”Langmuir, 2008, 3584-3589.
Yu, Y.; Zhan, W.; Albrecht-Schmitt, T. E. “One- and Two-Dimensional Silver and Zinc Uranyl Phosphates Containing Bipyridyl Ligands.” Inorg. Chem., 2007, 10214-10220.
Zhan, D.; Li, X.; Zhan, W.; Fan, F.-R. F.; Bard, A. J. “Scanning Electrochemical Microscopy. 58. The Application of a Micropipette-Supported ITIES Tip to Detect Ag+ and Study Its Effect on Fibroblast Cells.” Anal. Chem. 2007, 5225-5231.
Zhan, W.; Bard, A. J. “Electrogenerated Chemiluminescence. 83. Immunoassay of Human C-Reactive Protein (CRP) by Using Ru(bpy)32+ Encapsulated Liposomes as Labels.”Anal. Chem., 2007, 459-463.
Bard, A. J.; Li, X.; Zhan, W. “Chemically Imaging Living Cells by Scanning Electrochemical Microscopy.” Biosens. Bioelect. 2006, 461-472.
Zhan, W.; Bard, A. J. “Scanning Electrochemical Microscopy. 56. Probing Outside and Inside Single Giant Liposomes Containing Ru(bpy)32+.”Anal. Chem., 2006, 726-733.
Zhan, W.; Crooks, R. M. “Microelectrochemical Logic Circuits.”J. Am. Chem. Soc., 2003, 9934-9935. (Highlighted by Chemical & Engineering News, Sep. 1 2003, Nature Materials Sep. 2003 and Analytical Chemistry Oct. 1 2003)
Zhan, W.; Alvarez, J.; Sun, L.; Crooks, R. M. “A Multichannel Microfluidic Sensor that Detects Anodic Redox Reactions Indirectly Using Anodic Electrogenerated Chemiluminescence.” Anal. Chem., 2003, 1233-1238.
Zhan, W.; Alvarez, J.; Crooks, R. M. “A Two-Channel Microfluidic Sensor that Uses Anodic Electrogenerated Chemiluminescence as a Photonic Reporter of Cathodic Redox Reactions.” Anal. Chem., 2003, 313-318.
Zhan, W.; Alvarez, J.; Crooks, R. M. “Electrochemical Sensing in Microfluidic Systems Using Electrogenerated Chemiluminescence as a Photonic Reporter of Electroactive Species.” J. Am. Chem. Soc., 2002, 13265-13270.