个人简介
Having graduated with a degree in Biochemistry from the University of Sheffield (the department in which Krebs delineated the citric acid cycle) my interests in plants really began during my PhD studies. In the same Biochemistry Department I became interested in the regulation of plant metabolism, where I focused on carbon-nitrogen interactions in roots. These interests led me to a post-doctoral period as a research fellow in the Institute of Plant Physiology, at the University of Bern, Switzerland where I followed the same theme, but in relation to photorespiration in leaves. In 1981, I was fortunate to be appointed to a Faculty position in the Department of Botany at the University of Manchester UK . The next 21 years saw a period of great change as we established the largest unified School of Biological Sciences in the UK, where I became Dean of Research. I moved to Guelph in the Summer of 2002 and served continuously as Dean of the College of Biological Science until August 2015.
Prior to moving to Canada, I served on several grant-awarding committees of the UK Biotechnology and Biological Sciences Research Council (BBSRC) and was the national coordinator of a 5 year programme involving 20 laboratories studying the Regulation of Plant Metabolism. I was also the coordinator for a major EU project studying starch synthesis in wheat, which involved laboratories in five countries. I served as a member of the Boards of Governors for two of the premier UK plant science research institutes, The John Innes Centre and the Scottish Crops Research Institute. In the UK and Canada, I was Associate Editor of the Journal of Experimental Botany from 1994-2011. Since moving to Canada, I have served as President of the Canadian Council of Deans of Science (CCDS), the Provincial Early Researchers Awards panel, and the ORF-Research Excellence panel.
Education
PhD -- University of Sheffield
Postdoctoral Research Fellow, Institute of Plant Physiology, at the University of Bern, Switzerland
研究领域
Much of our current effort is focused on understanding the regulation of starch synthesis in storage issues such as the developing seeds of cereals. Starch is the major determinant of yield in such crops, and has wide application in both the food and non-food industries, yet there remain a huge number of unknowns in what limits the production and structure of this important glucan polymer. There is also an increasing realization that different types of starch provide benefits for human health. For example, Resistant Starch (RS) reduces the glycemic load in foods and helps maintain insulin sensitivity, reducing the incidence of Type 2 Diabetes (T2D). RS which passes into the large bowel then becomes a substrate for the human microbiome, and the products of starch degradation in the large bowel improve colonic health and are believed to reduce the incidence of colorectal cancer. I am currently leading a large, interdisciplinary team whose expertise ranges from understanding how RS is produced in plants, to studies of its health benefits in human subjects. This involves faculty with expertise which includes plant biochemistry, genetics, molecular biology, microbiology, human physiology and nutrition.
Many of our own studies have emanated from the investigation of amyloplasts, the organelles in which starch is made. We are attempting to elucidate the biochemical mechanisms which serve to regulate the enzymes of starch synthesis within amyloplasts. We are actively investigating the role of post-translational modification (protein phosphorylation), and were the first to demonstrate the existence of multi-enzyme complexes which are involved in making starch. The techniques we use to address these questions include proteomic technologies such as mass spectrometry, and bioinformatics as well as protein isolation and organelle purification coupled with genetic modification. Our research covers cereals such as maize, barley, rice and wheat, as well as the model organism Arabidopsis thaliana. Genetic manipulation of starch biosynthesis in the latter has led us into an exciting new project aimed at improving oilseed production in crops such as canola.
During my career I have been fortunate to have advised more than 25 research students and 15 post-doctoral research assistants, and we have had a regular stream of international visitors with whom we collaborate actively. Many of the students and post-docs have gone on to establish outstanding scientific careers in universities, industry and commerce, as well as being recognized through the awards of prestigious fellowships.
We have an extensive network of ongoing collaborations, involving laboratories in Australia, France, Germany, Japan, the United Kingdom and the United States as well as within Canada.
I work very closely with Dr Ian Tetlow, a faculty member in the same department. We are currently actively searching for graduate students to join us on grants awarded by NSERC and OMAFRA.
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
I. J. Tetlow, F. Liu and M. J. Emes (2015) Protein-protein interactions during starch biosynthesis. In “Starch. Metabolism and Structure”, Nakamura, Y., (ed.). Springer. pp 291-313.
I.J.Tetlow and M.J.Emes (2014) A review of starch branching enzymes and their role in amylopectin biosynthesis. IUBMB Life 66, 546-558. http://dx.doi.org/10.1002/iub.1297
Michael J. Emes and Ian J. Tetlow (2012) The role of heteromeric protein complexes in starch synthesis. In Starch: origins, structure and metabolism, SEB Publishing (I.J.Tetlow Editor) Vol 5, pp 255-278.
I. J. Tetlow, F. Liu, A. Makhmoudova and M.J. Emes (2011) Biochemical, Genetic and Molecular Insights on Starch Biosynthesis in Cereals: A Means to Quality Improvement. In “Wheat. Science Dynamics: Challenges and Opportunites”, Eds R. N. Chibaar and J. Dexter. Agrobios (International). pp 509 – 525.
I. J. Tetlow and M. J. Emes (2011) Plant Systems. Starch Biosynthesis in Higher Plants: The Starch Granule. In: Murray Moo-Young (ed.), Comprehensive Biotechnology, Second Edition, Vol 4, pp 37-45. Elsevier.
I. J. Tetlow and M. J. Emes (2011) Plant Systems. Starch Biosynthesis in Higher Plants: The Enzymes of Starch Synthesis. In: Murray Moo-Young(ed.), Comprehensive Biotechnology, Second Edition, Vol 4, pp 47-65. Elsevier.
Liu, F., Zhao, Q., Mano, N., Ahmed, Z., Nitschke, F., Cai, Y., Chapman, K.D., Steup, M., Tetlow, I.J., and Emes, M.J. (2016) Modification of starch metabolism in transgenic Arabidopsis thaliana increases plant biomass and triples oilseed production. Plant Biotechnology Journal. 14, 976-985. doi:10.1111/pbi.12453.
Boyer, L., Roussel, X., Courseaux, A., Ndjindji, O.M., Lancelon-Pin, C., Putaux, J-L., Tetlow, I., Emes, M.J., Pontoire, B., D’Hulst, C., and Wattebled, F. (2016) Expression of E. coli glycogen branching enzyme in an Arabidopsis mutant devoid of endogenous starch branching enzymes induces the synthesis of starch-like polyglucans. Plant Cell and Environment 39, 1432-1447. doi: 10.1111/pce.12702
Sarah A. Dainty, S.A., Klingel, S.L., Pilkey, S.E., McDonald, E., McKeown, B., Emes, M.J. and Duncan, A.M. (2016) Resistant starch bagels reduce fasting and postprandial insulin in adults at risk for type 2 diabetes. J. Nutr. 146, 2252-2259.
Z. Ahmed, I. J. Tetlow, D. E. Falk, Q. Liu and M. J. Emes (2016) Resistant starch content is related to granule size in barley. Cereal Chemistry 93, 618-630.
Z. Ahmed, A. Regina, M. K. Morell, I .J. Tetlow and M. J. Emes (2015) Protein–protein interactions among enzymes of starch biosynthesis in high-amylose barley genotypes reveal differential roles of heteromeric enzyme complexes in the synthesis of A and B granules). Plant Science, 233, 95-106.http://dx.doi.org/10.1016/j.plantsci.2014.12.016
CroftsN., Abe N., Oitome, N.F., Matsushima, R., Hayashi, M., Tetlow, I.J., Emes, M.J., Nakamura, Y., and Fujita, N. (2015) Amylopectin biosynthetic enzymes from developing rice seed form enzymatically active protein complexes. J. Exp. Botany, http://jxb.oxfordjournals.org/content/early/2015/05/14/jxb.erv212
Luo, J., Ahmed, R., Kosar-Hashemi, B., Larroque, O., Butardo Jr., V.M., Tanner, G.J., Colgrave, M.L., Upadhyaya, N.M., Tetlow, I.J., Emes, M.J., Millar, A., Jobling, S.A., Morell, M.K. and Li, Z. (2015) The different effects of starch synthase IIa mutations or variation on endosperm amylose content of barley, wheat and rice are determined by the distribution of starch synthase I and starch branching enzyme IIb between the starch granule and amyloplast stroma. Theor. Appl. Genet. http://link.springer.com/article/10.1007/s00122-015-2515-zhttp://
F. Zhua, E. Bertoft, Y. Wang, M. Emes, I. Tetlow, and K Seetharaman (2015). Structure of Arabidopsis leaf starch is markedly altered following nocturnal degradation. Carbohydrate Polymers 117, 1002-1013
A. Makhmoudova, D. Williams, D. Brewer, S. Massey, J. Patterson, A. Silva, K. A. Vassall, F. Liu, S. Subedi, G. Harauz, K.W. M. Siu, I. J. Tetlow and M. J. Emes (2014) Identification of Multiple Phosphorylation Sites on Maize Endosperm Starch Branching Enzyme IIb, a Key Enzyme in Amylopectin Biosynthesis. J. Biol. Chem. 289, 9233-46.http://www.jbc.org/content/early/2014/02/18/jbc.M114.551093
R. M. Subasinghe, F. Liu, U. C. Polack, E. A. Lee, M. J. Emes and I. J. Tetlow (2014) Multimeric states of starch phosphorylase determine protein-protein interactions with starch biosynthetic enzymes in amyloplasts. Plant Physiology and Biochemistry 83, 168-179.
Cisek, R., D. Tokarz, S. Krouglov, M. Steup, M. J. Emes, I. J. Tetlow and V. Barzda (2014). Second Harmonic Generation Mediated by Aligned Water in Starch Granules. The Journal of Physical Chemistry B., 118, 14785-14794. DOI:10.1021/jp508751s. Link
MacNeil, S., Rebry, R.,Tetlow, I.J., M. J. Emes, M.J., McKeown, B. and Graham, T.E. (2013) Resistant Starch Intake at Breakfast Affects Postprandial Responses in Type 2 Diabetics, and Enhances Insulin Secretion Following a Second Meal.Applied Physiology, Nutrition and Metabolism, 38, 1187-1195.
F. Liu, N. Romanova, E.A. Lee, R. Ahmed, E. Gilbert, M. Evans, M. K. Morell, M. J. Emes, and Ian J. Tetlow (2012) Glucan affinity of starch synthase IIa determines binding of starch synthase I and starch branching enzyme IIb to starch granules Biochemical Journal, 448, 373-387.
F. Liu, Z. Ahmed, E. A. Lee, E. Weber, Q. Liu, R. Ahmed, M. K. Morell, M. J. Emes and I. J. Tetlow (2012) Allelic variants of the amylose extender mutation of maize demonstrate phenotypic variation in starch structure resulting from modified protein-protein interactions J. Exp. Bot. 63, 1167-1183