个人简介
Institute of Biomaterials & Biomedical Engineering
Edward S. Rogers Sr. Department of Electrical & Computer Engineering
研究领域
Neural Engineering, Neural Prostheses, Autonomic Neuromodulation, Electrical Nerve Stimulation and Recording, Lower Urinary Tract Function, Obstructive Sleep Apnea, Vagus Nerve Stimulation.
A fundamental goal of neural engineering is to better understand the role of the nervous system—in both normal and pathological states — and thus develop clinically effective therapies based on electrical neuromodulation.
Examples include functional electrical stimulation in persons with spinal cord injury (e.g., reanimation of movement), hypoglossal nerve stimulation for obstructive sleep apnea, and sacral neuromodulation for urinary function.
Although, in some cases, serendipitous discoveries have lead to therapies in which the precise neural mechanism is not fully understood: deep brain stimulation, vagus nerve stimulation, and cortical stimulation.
Despite the different pathways to discovery, it is clear that these “neural prostheses” can make an immediate and profound impact on the quality of life for millions of people around the world.
Since my initial graduate work in studying the feasibility of selective hypoglossal nerve stimulation for obstructive sleep apnea, the scope of my research has expanded to investigating neural reflexes as a means of restoring bladder function in persons with spinal cord injury.
Through parallel studies conducted in both the laboratory and clinical settings, I have been able to both expand our understanding and also validate our findings regarding the anatomical innervation and the neurophysiology of the lower urinary tract.
More recently, my area of research has extended to corporate sponsored projects that seek to better understand the neural mechanisms of various emerging clinical therapies: vagus nerve stimulation for chronic heart failure, posterior tibial nerve stimulation for treating urinary symptoms, vagus nerve stimulation for obstructive sleep apnea, and investigation of proprietary stimulation waveforms aimed at selectively modulating peripheral nerves.
I will pursue three areas of study that will form the basis of my research program at the University of Toronto. The first two topics will extend my current interest in the areas of lower urinary tract dysfunction and obstructive sleep apnea, while the third topic will explore novel areas of research related to vagus nerve stimulation (e.g., epilepsy).
The complex nature of each problem will require a collaborative effort between clinicians and engineers, and most importantly, the training of graduate and post-doctoral students to become independent researchers at the forefront of neural engineering.
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Urethral flow-responsive afferents in the cat sacral dorsal root ganglia. Snellings AE, Yoo PB, Grill WM. Neurosci Lett. 2012 May 10. 516(1):34-8.
A Voltage-Controlled Capacitive Discharge Method for Electrical Activation of Peripheral Nerves. Rosellini, W. M., Yoo, P. B., Engineer, N., Armstrong, S., Weiner, R. L., Burress, C. and Cauller, L. (2011). Neuromodulation: Technology at the Neural Interface, 14: 493–500.
Multiple pudendal sensory pathways reflexly modulate bladder and urethral activity in patients with spinal cord injury. Yoo PB, Horvath EE, Amundsen CL, Webster GD, Grill WM. J Urol. 2011 Feb. 185(2):737-43.
Mechanisms of reflex bladder activation by pudendal afferents. Woock JP, Yoo PB, Grill WM. Am J Physiol Regul Integr Comp Physiol. 2011 Feb. 300(2):R398-407.
Excitation properties of the right cervical vagus nerve in adult dogs. Castoro MA, Yoo PB, Hincapie JG, Hamann JJ, Ruble SB, Wolf PD, Grill WM. Exp Neurol. 2011 Jan. 227(1):62-8.