近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Wu, X.G., Li, B., Wen, X.G.* “Synthesis and Adsorption Properties of Hierarchical Fe3O4@MgAl-LDH Magnetic Microspheres”, J. Nanopart. Res. 2017, 19:131.
Jiang, R., Luo, X.X., Wen, X.G.* “Hydrothermal Synthesis of TiO2(B)Nanowires/CNTs as Anode Material for High Performance Lithium-ion Batteries”, Int. J. Electrochem. Sci., 2016, 11, 9471–9480.
Jiang, R., Zan, R., Zeng J.Y., Wen, X.G.* “Preparation of 3D pompon-like titanate nanotube microspheres and their adsorption properties on cationic dyes”, RSC Adv., 2016, 6, 97899–97906.
Zan, R, Xiao,J.J., Wen, X.G.* “Synthesis of TiO2 Nanorice and Their Improved Dye Sensitized Solar Cells Performance”, J. Mater. Sci.: Mater. El., 2017, 28, 4107-4113.
Lin,S.X., Ge, Q., Cao, Y.R., Qin, W., Wen, X.G.* “Controllable synthesis, characterization and lithiumion battery performance of LiFePO4 nanosheets”, Mater. Express,2016,6(4), 351-356.
Feng, K.Z., Rong, D.Q., Ren, W.A., Wen, X.G.* “Hierarchical flower-like gamma-AlOOH and gamma-Al2O3 microspheres: Synthesis and adsorption properties”, Mater. Express,2015,5(4), 371-375.
Wei, Z. S., Liu, Y., Wang, H., Mei, Z. W., Ye, J. W., Wen, X. G.*, Gu, L., Xie, Y. T. “A Gas-solid Reaction Growth of Dense TiO2 Nanowire Arrays on Ti Foils at Ambient Atmosphere”, J. Nanosci. Nanotechn.2012,12,316-23.
Ren, W.A., Liu, Y., Mei, Z.W., Wen, X.G.*, Wang, S.H., “In(OH)3 and In2O3 Nanorices and Microflowers: Mophology Transformation and Optical Properties”, J.Nanopart. Res. 2013,15:1452.
Mu, J.L., Liu, Y., Wang, H., Ye, J.W., Wen, X.G.*, Gu, L., Xie, Y.T. “Surfactant-Free Hydrothermal Synthesis of Ag/C Nanocables”, Mater. Express, 2012, 2, 130-136.
Gu, L., Sigle,W., Koch, C.T., Ogut,B., van Aken,P.A., Talebi, N., Vogelgesang, R., Mu, J.L., Wen, X.G., Mao, J.“Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets” Phys. Rev. B 2011, 83,195433.
Mei, Z.W., Liu,Y., Wang, H., Gao,S.J., Wen,X.G.*, Gu, L., Qiu, Y.F., Yang,S.H. “Facile and Controllable Growth of ZnO 1D Nanostructure Arrays on Zn Substrate by Hydrothermal Process” J. Nanosci. Nanotechn., 2010, 10, 3123-3130.
Wen,X.G., Xie, Y. T., Mak, M. W. C., Cheung, K. Y., Li, X. Y., Renneberg, R., and Yang, S. H. “Dendritic Nanostructures of Silver: Facile Synthesis, Structural Characterizations, and Sensing Applications”, Langmuir, 2006, 22, 4836-4842
Fang, Y. P., Wen, X. G., Yang, S.H. “Hollow and tin-filled nanotubes of single-crystalline In(OH)(3) grown by a solution-liquid-solid-solid route”, Angew Chem. Int. Ed. 2006, 45, 4655-4658
Fang, Y. P., Pang, Q., Wen, X. G., Wang, B. N., Yang, S.H. “Synthesis of ultrathin ZnO nanofibers aligned on a zinc substrate”, Small 2006, 2 (5) 612-615
Dong ,C. L., Mattesini, M., Augustsson, A., Wen, X. G., Zhang, W. X., Yang, S, H,, Persson, C., Ahuja, R., Luning, J., Chang, C. L., Guo, J. H. “Electronic structure and surface structure of Cu2S nanorods from polarization dependent X-ray absorption spectroscopy”, J. Electron Spectrosc. Relat. Phenom. 2006, 151 (1), 64-70
Fang Y.P., Wen X.G., Yang S.H., Pang Q., Ding L., Wang J.N., Ge W.K.“Hydrothermal synthesis and optical properties of ZnO nanostructured films directly grown from/on zinc substrates”, J. Sol-Gel Sci. Tech. 2005, 36 (2): 227-234
Anandan S., Wen X. G., and Yang S. H. “Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells" Mater. Chem. Phys, 2005, 93, 35-40.
Wen, X. G., Fang, Y. P., Pang Q., Yang, C. L., Wang, J. N.; Ge, W. K., Wong, K. S., and Yang, S. H. “ZnO Nanobelt Arrays Grown Directly from and on Zinc Substrates: Synthesis, Characterization, and Applications”, J. Phys.Chem. B.2005, 109, 15303-15308.
Fan, Z. Y., Wen X. G., Yang, S. H., Lu, J. G. “Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors” Appl. Phys. Lett. 2005, 87, 013113.
Wen, X. G., Fang, Y. P., Yang, S. H. “Ultrathin zinc nanowires and nanotubes grown by vapor transport” Angew Chem. Int. Ed. 2005, 44, 3562-3565.
Wen, X. G., Wang, S. H., Xie, Y. T., Li, X. Y., Yang, S. H. “Template-free and low temperature synthesis of single crystalline Ag2S nanowires on silver substrates” J. Phys. Chem. B 2005, 109, 10100-10106.
Wen, X. G., Xie, Y. T., Choi, C. L., Wan, K. C., Li, X. Y., Yang, S. H. “Copper-based nanowire materials: templated syntheses, characterizations, and Applications” Langmuir, 2005, 21, 4729-4737.
Yang, S. F. Wen, X. G., Zhang, W. X., Yang, S. H. “Photoelectrochemistry of pure and core/sheath nanowire arrays of Cu2S directly grown on copper electrodes” J. Electrochem. Soc. 2005, 152(3), G220-G226
Wen, X. G., Wang, S. H., Ding, Y., Wang, Z. L., Yang, S. H. “Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires” J. Phys. Chem. B 2005, 109, 215-220.
Wang, Z. L., Kong, X. Y., Wen, X. G., Yang, S. H. “In situ structure evolution from Cu(OH)2 nanobelts to copper nanowires”, J. Phys. Chem. B 2003, 107, 8275-8280.
Zhang, W. X., Wen, X. G., Yang, S. H. “Controlled reactions on a copper surface: Synthesis and characterization of nanostructured copper compound films”, Inorg. Chem. 2003, 42, 5005-5014.
Wen, X. G., Zhang, W. X., Yang, S. H. “Synthesis of Cu(OH)2 and CuO nanoribbon arrays on a copper surface”, Langumuir 2003, 19, 5898-5903.
Zhang, W. X., Wen, X. G., Yang, S. H., Berta, Y., Wang, Z. L. “Single-crystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature”, Adv. Mater. 2003, 15, 822.
Wen, X. G., Zhang, W. X., Yang, S. H. “Solution phase synthesis of Cu(OH)2nanoribbons by coordination self-assembly using Cu2S nanowires as precursors”, Nano. Lett. 2002, 2, 1397-1401.
Wen, X. G., Yang, S. H. “Cu2S/Au core/sheath nanowires prepared by a simple redox deposition method” Nano. Lett. 2002, 2, 451-454.