当前位置: X-MOL首页全球导师 海外导师 › Lin, Song

个人简介

Song grew up in Tianjin, China. After he earned his B.S. degree from Peking University in 2008, he pursued graduate studies at Harvard University working under the direction of Professor Eric Jacobsen. His doctoral research was focused on the development and mechanistic understanding of enantioselective reactions catalyzed by multifunctional hydrogen-bond donors. Motivated by the deep interest in catalysis cultivated by his graduate studies, Song then carried out postdoctoral studies with Professor Chris Chang at UC Berkeley. His postdoctoral research was focused on the design of molecularly tunable materials, such as covalent organic frameworks, as catalysts for electrochemical conversion of CO2 to value-added products. In the summer of 2016, Song moved to Ithaca to start his independent career. He was promoted to Associate Professor with tenure in July 2021 and then to Full Professor in January 2023. CAREER 2023 – Tisch University Professor, Cornell University 2023 – Full Professor, Cornell University 2021 – 2022 Associate Professor, Cornell University 2016 – 2021 Assistant Professor, Cornell University EDUCATION 2013 – 2016 University of California, Berkeley, Postdoctoral Fellow (Advisor: Christopher J. Chang) 2008 – 2013 Harvard University, M.A. (2010), Ph.D. (2013) (Thesis Advisor: Eric N. Jacobsen) Ph.D. Thesis: Elucidating the Cation-π Interaction in Small-Molecule Asymmetric Catalysis 2004 – 2008 Peking University, B.S. (2008) (Research Advisor: Zhangjie Shi)

研究领域

Research in the Lin Lab lies within the broadly-defined field of organic chemistry, with specific emphases on synthetic electrochemistry and electrocatalysis. We develop methodologies that expand the scope and sustainability of synthetic chemistry using the unique capabilities of electrochemistry. In particular, we have developed electrocatalytic approaches to encompass a variety of oxidative and reductive transformations towards the synthesis of valuable organic molecules. Our program also spans the areas of transition metal catalysis and materials chemistry. Throughout these research areas, our work is underpinned by the rational design and mechanistic interrogation of methodologies. Our research objectives are underpinned by frequent use of analytical and computational tools beyond an organic chemist’s standard toolkit of spectroscopic and analytical instruments. We employ electroanalytical chemistry, density functional theory calculations, computational structure-activity studies, and physical organic chemistry principles to drive the discovery, development, and mechanistic interrogation of new synthetic transformations. In combination with our extensive knowledge of organic chemistry, our experience in these subdisciplines enables us to pursue both fundamental and applied advances. Electrocatalysis Electrophotocatalysis Electroreductive Chemistry Radical Redox Relay Catalysis Polymer and Materials Chemistry

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Lu, Z.; Ju, M.; Wang, Y.; Meinhardt, J. M.; Martinez Alvarado, J. I.; Villemure, E.; Terrett, J. A.; Lin, S.* “Regioselective Aliphatic C–H Functionalization Using Frustrated Radical Pairs.” Nature 2023, accepted. Rein, J.; Rozema, S. D.; Langner, O. C.; Zacate, S. B.; Hardy, M. A.; Siu, J. C.; Mercado, B. Q.; Sigman, M. S.*; Miller, S. J.*; Lin, S.* “Generality-Oriented Optimization of Enantioselective Aminoxyl Radical Catalysis.” Science 2023, 380, 706–712. DOI: 10.1126/science.adf6177 [html] Guan, W.; Lu, L.; Jiang, Q.; Gittens, A. F.; Wang, Y.; Novaes, L. F. T.; Klausen, R. S.*; Lin, S.* “An Electrochemical Strategy to Synthesize Disilanes and Oligosilanes from Chlorosilanes.” Angew. Chem., Int. Ed. 2023, DOI: 10.1002/anie.202303592. [html] Rein, J.; Meinhardt, J. M.; Hofstra Wahlman, J. L.; Sigman, M. S.*; Lin, S.* “A Physical Organic Approach towards Statistical Modeling of Tetrazole and Azide Decomposition.” Angew. Chem., Int. Ed. 2023, DOI: 10.1002/anie.202218213. [html] Wood, D.; Lin, S.* “Deuterodehalogenation Under Net Reductive or Redox-Neutral Conditions Enabled by Paired Electrolysis.” Angew. Chem., Int. Ed. 2023, DOI: 10.1002/anie.202218858. Sun, G.-Q.; Yu, P.; Zhang, W.; Zhang, W.; Wang, Y.; Liao, L.-L.; Zhang, Z.; Li, L.; Lu, Z.; Yu, D.-G.; Lin, S. “Electrochemical reactor dictates site selectivity in N-heteroarene carboxylations.” Nature 2023. DOI: 10.1038/s41586-022-05667-0 Tran, V. T.; Kim, N.; Rubel, C. Z.; Wu, X.; Kang, T.; Jankins, T. C.; Li, Z.-Q.; Joannou, M. V.; Ayers, S.; Gembicky, M.; Bailey, J.; Sturgell, E. J.; Sanchez, B. B.; Chen, J. S.; Lin, S.; Eastgate, M. D.; Wisniewski, S. R.; Engle, K. M. “Structurally Diverse Bench-Stable Nickel(0) Pre-Catalysts: A Practical Toolkit for In Situ Ligation Protocols.” Angew. Chem., Int. Ed. 2022, e202211794. DOI: 10.1002/anie.202211794 Rein, J.; Lin, S.; Kalyani, D.; Lehnherr, D. High-Throughput Experimentation for Electrochemistry. In The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis; Emmert, M. H., Jouffroy, M., Leitch, D. C., Eds; ACS Symposium Series, Vol. 1419; American Chemical Society, 2022; pp 167–187. DOI: 10.1021/bk-2022-1419.ch010 Novaes, L. F. T.; Wang, Y.; Liu, J.; Riart-Ferrer, X.; Lee, W.-C. C.; Fu, N.; Ho, J. S. K.; Zhang, X. P.; Lin, S. “Electrochemical Diazidation of Alkenes Catalyzed by Manganese Porphyrin Complexes with Second-Sphere Hydrogen-Bond Donors.” ACS Catal. 2022, 12, 14106–14112. DOI: 10.1021/acscatal.2c05186 Wu, X.; Gannett, C. N.; Liu, J.; Zeng, R.; Novaes, L. F. T.; Wang, H.; Abruña, H. D.; Lin, S. “Intercepting Hydrogen Evolution with Hydrogen-Atom Transfer: Electron-Initiated Hydrofunctionalization of Alkenes.” J. Am. Chem. Soc. 2022, 144, 17783–17791. DOI: 10.1021/jacs.2c08278 Wu, X.; Chang, Y.; Lin, S. “Titanium Radical Redox Catalysis Reactions, and Modes of Activation.” Chem 2022, 8, 1805–1821. DOI: 10.1016/j.chempr.2022.06.005 [html] Invited perspective. Dedicated to the occasion of Prof. John McMurry’s 80th birthday Guo, S.; Kim, M. J.; Siu, J. C.; von Windheim, N.; Gall, K.; Lin, S.; Benjamin, J. W. “Eight-Fold Intensification of Electrochemical Azidooxygenation with a Flow-Through Electrode.” ACS Sustainable Chemistry & Engineering 2022, 10, 7648–7657. DOI: 10.1021/acssuschemeng.2c01525 Martinez Alvarado, J. I.; Meinhardt, J. M.; Lin, S. “Working at the Interfaces of Data Science and Synthetic Electrochemistry.” Tetrahedron Chem 2022, 1, 100012. DOI: 10.1016/j.tchem.2022.100012 Zhang, W.; Lu, L.; Zhang, W.; Wang, Y.; Ware, S.; Mondragon, J.; Rein, J.; Strotman, N.; Lehnherr, D.; See, K.; Lin, S. “Electrochemically Driven Cross-Electrophile Coupling of Alkyl Halides.” Nature 2022, 604, 292–297. DOI: 10.1038/s41586-022-04540-4 Novaes, L. F. T.; Ho, J. S. K.; Mao, K.; Liu, K.; Tanwar, M.; Neurock, M.; Villemure, E.; Terrett, J. A.; Lin, S. “Exploring Electrochemical C(sp3)–H Oxidation for the Late-Stage Methylation of Complex Molecules.” J. Am. Chem. Soc. 2022, 144, 1187–1197. DOI: 10.1021/jacs.1c09412 Park, S. H.; Ju, M.; Ressler, A. J.; Shim, J.; Kim, H.; Lin, S. “Reductive Electrosynthesis: A New Dawn.” Aldrichimica Acta 2021, 54, 17–27. ISSN: 0002-5100 Rein, J.; Meinhardt, J. M.; Hofstra Wahlman, J. L.; Sigman, M. S.; Lin, S. “An Explosophore-Based Approach Towards the Prediction of Energetic Material Sensitivity Properties.” ChemRxiv pre-print 2021. DOI: 10.33774/chemrxiv-2021-16f6w Wood, D. P.; Guan, W.; Lin, S. “Titanium and Cobalt Bimetallic Radical Redox Relay for the Isomerization of N-Bz Aziridines to Allylic Amides.” Synthesis 2021, 53, 4213–4220. DOI: 10.1055/s-0037-1610779 Rein, J.; Annand, J. R.; Wismer, M. K.; Fu, J.; Siu, J. C.; Klapars, A; Strotman, N. A.; Kalyani, D.; Lehnherr, D.; Lin, S. “Unlocking the Potential of High-Throughput Experimentation for Electrochemistry with a Standardized Microscale Reactor.” ACS Cent. Sci. 2021, 8, 1347–1355. DOI: 10.1021/acscentsci.1c00328 Novaes, L. F. T.; Liu, J.; Shen, Y.; Lu, L.; Meinhardt, J. M.; Lin, S. “Electrocatalysis as an Enabling Technology for Organic Synthesis.” Chem. Soc. Rev. 2021, 50, 7941–8002. DOI: 10.1039/D1CS00223F Nelson, H.; Siu. J.C.; Saha, A.; Cascio, D.; Wu, S-B.; Lu, C.; Rodriguez, J. A.; Houk, K. N.; Lin, S. “Isolation and X-ray Crystal Structure of an Electrogenerated TEMPO–N3 Charge-Transfer Complex.” Org. Lett. 2021, 23, 454–458. DOI: 10.1021/acs.orglett.0c03966 Lu, L.; Siu, J. C.; Lai, Y.; Lin, S. “An Electroreductive Approach to Radical Silylation via the Activation of Strong Si–Cl Bonds.” J. Am. Chem. Soc. 2020, 142, 21272–21278. DOI: 10.1021/jacs.0c10899 Zhang, W.; Lin, S. “Electroreductive Carbofunctionalization of Alkenes with Alkyl Bromides via a Radical-Polar Crossover Mechanism.” J. Am. Chem. Soc. 2020, 142, 20661–20670. DOI: 10.1021/jacs.0c08532 Robinson, S. G.; Wu, X.; Jiang, B.; Sigman, M. S.; Lin, S. “Mechanistic Studies Inform Design of Improved Ti(salen) Catalysts for Enantioselective [3+2] Cycloaddition.” J. Am. Chem. Soc. 2020, 142, 18471–18482. DOI: 10.1021/jacs.0c07128 Liu, J.; Lu, L.; Wood, D.; Lin, S. “New Redox Strategies in Organic Synthesis by Means of Electrochemistry and Photochemistry.” ACS Cent. Sci. 2020, 6, 1317–1340. DOI: 10.1021/acscentsci.0c00549 Song, L.; Fu, N.; Ernst, B. G.; Lee, W. H.; Frederick, M. O.; DiStasio, R. A. Jr.*; Lin, S.* “Dual Electrocatalysis Enables Enantioselective Hydrocyanation of Conjugated Alkenes.” Nat. Chem. 2020, 12, 747–754. DOI: 10.1038/s41557-020-0469-5 [open full-text access] Siu, J. C.; Fu, N.; Lin, S.* “Catalyzing Electrosynthesis: A Homogeneous Electrocatalytic Approach to Reaction Discovery.” Acc. Chem. Res. 2020, 53, 547–560. DOI: 10.1021/acs.accounts.9b00529 Novaes, L. F. T.; Lin, S.* “Electrocatalytic Diazidation of Alkenes.” Trends in Chem. 2020, 2, 84–85. DOI: 10.1016/j.trechm.2019.10.005 Zhang, W.; Carpenter, K.; Lin, S.* “Electrochemistry Broadens the Scope of Flavin Photocatalysis: Photoelectrocatalytic Oxidation of Unactivated Alcohols.” Angew. Chem., Int. Ed. 2020, 59, 409–417. DOI: 10.1002/ange.201910300 Kim, H.; Kim, H.; Lambert, T.*; Lin, S.* “Reductive Electrophotocatalysis: Merging Electricity and Light to Achieve Extreme Reduction Potentials.” J. Am. Chem. Soc. 2020, 142, 2087–2092. DOI: 10.1021/jacs.9b10678 For the ChemRxiv preprint version, see McCallum, T.; Wu, X.; Lin, S.* “Recent Advances in Titanium Radical Redox Catalysis.” J. Org. Chem. 2019, 84, 14369–14380. DOI: 10.1021/acs.joc.9b02465 Fu, N.; Song, L.; Liu, J.; Shen, Y.; Siu, J. C.; Lin, S.* “New Bisoxazoline Ligands Enable Enantioselective Electrocatalytic Cyanofunctionalization of Vinylarenes.” J. Am. Chem. Soc. 2019, 141, 14480–14485. DOI: 10.1021/jacs.9b03296 Lu, L.; Fu, N.; Lin, S.* “Three-Component Chlorophosphinoylation of Alkenes via Anodically Coupled Electrolysis.” Syn. Lett. 2019, 30, 1199–1203. DOI: 10.1055/s-0039-1689934 Ye, K-Y.; McCallum, T.; Lin, S.* “Bimetallic Radical Redox-Relay Catalysis for the Isomerization of Epoxides to Allylic Alcohols.” J. Am. Chem. Soc. 2019, 141, 9548–9554. DOI: 10.1021/jacs.9b04993 Siu, J. C.; Parry, J. B.; Lin, S.* “Aminoxyl-Catalyzed Electrochemical Diazidation of Alkenes Mediated by a Metastable Charge-Transfer Complex.” J. Am. Chem. Soc. 2019, 141, 2825–2831. DOI: 10.1021/jacs.8b13192 Fu, N.; Shen, Y.; Allen, A.R.; Song, L.; Ozaki, A.; Lin, S.* “Mn-catalyzed Electrochemical Chloroalkylation of Alkenes.” ACS Catal. 2019, 9, 746–754. DOI: 10.1021/acscatal.8b03209 Wu, X.; Hao, W.; Ye, K-Y.; Jiang, B.; Pombar, G.; Song, Z.; Lin, S.* “Ti-Catalyzed Radical Alkylation of Secondary and Tertiary Alkyl Chlorides Using Michael Acceptors.” J. Am. Chem. Soc. 2018, 140, 14836–14843. DOI: 10.1021/jacs.8b08605 Siu, J. C.; Sauer, G. S.; Saha, A.; Macey, R. L.; Fu, N.; Chauvirie, T.; Lancaster, K. M.*; Lin, S.* “Electrochemical Azidooxygenation of Alkenes Mediated by a TEMPO–N3Charge-Transfer Complex.” J. Am. Chem. Soc. 2018, 40, 12511–12520. DOI: 10.1021/jacs.8b06744 Fu, N.; Sauer, G. S.; Lin, S.* “A general, electrocatalytic approach to the synthesis of vicinal diamines.” Nat. Protoc. 2018, 13, 1725–1743. DOI: 10.1038/s41596-018-0010-0 [PDF][HTML] Ye, K-Y.; Song, Z.; Sauer, G. S.; Harenberg, J. H.; Fu, N.; Lin, S.* “Synthesis of Chlorotrifluoromethylated Pyrrolidines by Electrocatalytic Radical Ene‐Yne Cyclization.” Chem. Eur. J. 2018, 24, 12274–12279. DOI:10.1002/chem.201802167 (Young Chemists Special Issue). Sauer, G. S.; Lin, S.* “An Electrocatalytic Approach to the Radical Difunctionalization of Alkenes.” ACS Catal. 2018, 8, 5175–5187. DOI: 10.1021/acscatal.8b01069 (Invited Perspective). Hao, W.; Harenberg, J. H.; Wu, X.; Macmillan, S. N.; Lin, S.* “Diastereo- and Enantioselective Formal [3 + 2] Cycloaddition of Cyclopropyl Ketones and Alkenes via Ti-Catalyzed Radical Redox Relay.” J. Am. Chem. Soc. 2018, 140, 3514–3517. DOI: 10.1021/jacs.7b13710 Ye, K.; Pombar, G.; Fu, N.; Sauer, G. S.; Keresztes, I.; Lin, S.* “Anodically Coupled Electrolysis for the Heterodifunctionalization of Alkenes.” J. Am. Chem. Soc. 2018, 140, 2438–2441. DOI: 10.1021/jacs.7b13387 Peterson, B. M.; Lin, S.*; Fors, B. P.* “Electrochemically Controlled Cationic Polymerization of Vinyl Ethers.” J. Am. Chem. Soc. 2018, 140, 2076–2079. DOI: 10.1021/jacs.8b00173 Parry, J. B .; Fu, N.; Lin, S.* “Electrocatalytic Difunctionalization of Olefins as a General Approach to the Synthesis of Vicinal Diamines.” Synlett 2018, 29, 257–265. DOI: 10.1055/s-0036-1591749 (Invited Account). Fu, N.; Sauer, G. S.; Lin, S.* “Electrocatalytic Radical Dichlorination of Alkenes with Nucleophilic Chlorine Sources.” J. Am. Chem. Soc. 2017, 139, 15548–15553. DOI: 10.1021/jacs.7b09388. Hao, W.; Wu, X.; Sun, J. Z.; Siu, J. C.; MacMillan, S. N.; Lin, S.* “Radical Redox-Relay Catalysis: Formal [3+2] Cycloaddition of N-Acylaziridines and Alkenes.” J. Am. Chem. Soc. 2017, 139, 12141–12144. DOI: 10.1021/jacs.7b06723. Fu, N.; Sauer, G. S.; Saha, A.; Loo, A; Lin, S.* “Metal-catalyzed electrochemical diazidation of alkenes.” Science 2017, 357, 575–579.

推荐链接
down
wechat
bug