近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Collective dynamics of self-propelled sphere-dimer motors S. Thakur and R. Kapral, Phys. Rev. E, 85, 026121 (2012).
Molecular crowding and protein enzymatic dynamics C. Echeverria and R. Kapral, Phys. Chem. Chem. Phys., 14, 6755 (2012).
Modeling of solvent flow effects in enzyme catalysis under physiological conditions J. Schofield, P. Inder and R. Kapral, J. Chem. Phys., 136, 205101 (2012).
Mapping quantum-classical Liouville equation: Projectors and trajectories A. Kelly, R. van Zon, J. Schofield and R. Kapral, J. Chem. Phys., 136, 084101 (2012).
Nonadiabatic dynamics in open quantum-classical systems: Forward-backward trajectory solution C.-Y. Hsieh and R. Kapral, J. Chem. Phys., 137, 22A507 (2012).
Coarse-grain model for lipid bilayer self-assembly and dynamics: Multiparticle collision description of the solvent M.-J. Huang, R. Kapral, A. S. Mikhailov and H.-Y. Chen, J. Chem. Phys., 137, 055101 (2012).
Phoretic self-propulsion: a mesoscopic description of reaction dynamics that powers motions P. de Buyl and R. Kapral, Nanoscale, 5, 1337 (2013).
Perspective: Nanomotors without moving parts that propel themselves in solution R. Kapral, J. Chem. Phys., 138, 020901 (2013).
Analysis of the forward-backward trajectory solution for the mixed quantum-classical Liouville equation C.-Y. Hsieh and R. Kapral, J. Chem. Phys., 138, 134110 (2013).
Self-propulsion through symmetry breaking P. de Buyl, A S. Mikhailov and R. Kapral, EPL, 103, 60009 (2013).
Forward-backward solution of the quantum-classical Liouville equation in the adiabatic mapping basis C.-Y. Hsieh, J. Schofield and R. Kapral, Mol. Phys., 111, 3546 (2013).
Coarse-grain simulations of active molecular machines in lipid bilayers M.-J. Huang, R. Kapral, A. S. Mikhailov and H.-Y. Chen, J. Chem. Phys., 138, 195101 (2013).
Nanomotors Propelled by Chemical Reactions R. Kapral in Engineering of Chemical Complexity, eds, A. S. Mikhailov and G. Ertl, (World Scientific, Singapore, 2013), pp. 101-124.
Quantum-Classical Liouville Dynamics of Condensed Phase Quantum Processes G. Hanna and R. Kapral in Reaction Rate Constant Computations: Theories and Applications, eds, K. Han, T. Chu, (Royal Society of Chemistry, 2013), pp. 233-259.
Correlation Functions in Open Quantum-Classical Systems C.-Y. Hsieh and R. Kapral, Entropy, 16, 200 (2014).
Angstrom-scale Chemically Powered Motors P. H. Colberg and R. Kapral, EPL, 106, 20004 (2014).
Diiffusional correlations among multiple active sites in a single enzyme C. Echeverria and R. Kapral, Phys. Chem. Chem. Phys. 16, 6211 (2014).
Analysis of geometric phase effects in the quantum-classical Liouville formalism I. G. Ryabinkin, C.-Y. Hsieh, R. Kapral and A. F. Izmaylov, J. Chem. Phys. 140, 084104 (2014).
Ring closure dynamics for a chemically active polymer D. Sarkar, S. Thakur, Y.-G. Tao and R. Kapral, Soft Matter 10, 9577-9584 (2014).
Chemistry in Motion:Tiny Synthetic Motors P. H. Colberg, S. Y. Reigh, B. Robertson and R. Kapral, Acc. Chem. Res. 47, 3504 (2014).