个人简介
B.S., 1998, Wuhan University, Wuhan, P. R. China
M.S., 2001, Wuhan University, Wuhan, P. R. China
Ph.D., 2007, University of Alberta, Canada
Postdoctoral Associate, 12/2007-12/2011, University of California, Berkeley
研究领域
Analytical Chemistry/Micro/Nanofluidics/Single Cell Analysis/Genetic Analysis/Proteomics/Cancer Biology and Diagnostics/Systems Biology/Nanobiotechnology
Quantitative analysis of dynamic and heterogeneous biological processes is key to deciphering complex biological systems, such as cancer. Drawing on microfluidics, analytical chemistry, molecular/cell biology, bioengineering, and material science, our research is dedicated to advancing quantitative biology and personalized medicine through technology innovation and translational research. We currently focus on three main areas:
Quantitative Single Cell Analysis for Cancer Biology and Clinical Medicine. Cancer is a complex genetic disease that derives from single cells gradually accumulating mutations. Early stage carcinogenesis has been challenging to study due to the lack of tools capable of quantitative detection and molecular characterization of low frequency mutations. Most current molecular biology methods examine an ensemble average across a large number of cells despite the remarkable molecular heterogeneity of tumor cells. So the ability of molecular analysis with single cell sensitivity and resolution is imperative for a better understanding of cancer biology and for improving clinical medicine.
Single cell analysis represents a new frontier in biology and medicine. Our research in this field focuses on developing high-throughput microfluidic technologies that enable quantitative single cell analysis of genotypic and phenotypic changes associated with cancer at the systems level. We are particularly interested in applying the new technologies to interrogating rare cancer cells of clinical significance, such as minimal residual disease (MRD) responsible for disease recurrence and circulating tumor cells (CTC) associated with metastasis.
High-throughput Glycoproteomics and Glycomics. Protein glycosylation is ubiquitously involved in all aspects of tumor development. While glycoproteins and their carbohydrate modifications (glycans) show great potential for cancer diagnosis and prognosis, progress of glycobiology and clinical utility has been largely hindered due to the complexity of glycome, dynamic nature of glycosylation changes, and the lack of efficient analytical tools. In response to these challenges, our group is interested in exploiting microfluidic platforms to leverage the performance of glycoproteomic and glycomic analysis. Our short-term goal is to develop high-throughput glycomic profiling technologies that enable sensitive quantitation of glycoproteins of interest, structural analysis of glycans, and dynamic mapping of disease-associated glycosylation aberrations using minute blood samples. We are committed to establishing cross-disciplinary collaborations to address the long-term goal-- development and clinical validation of glyco-biomarkers and diagnostic devices for early detection of cancer and cancer risk.
Nanomaterial Enabled Bioanalytical Technologies. Rapid advent of life science and global health care calls for the development of novel bioanalytical methodologies and high-performance affordable diagnostic devices. Nanoscale materials, such as nanoparticle and nanowire, are well suited to address this need due to their unique chemical and physical properties. Most of these designer materials, however, are not amenable to monolithic device integration, which significantly restricts their biomedical applications. Our research in this area is oriented to explore novel programmable nanomaterial self-assembling techniques and to develop nanomaterial integrated microsystems for high-performance analysis of small molecule drugs, metabolites, and biomarkers. The applications we are interested in encompass forensics, pharmaceutical analysis, and public health care such as point-of-care (POC) diagnostics.
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Wang, T; Zhang, M; Dreher, D; Zeng, Y “Ultrasensitive Microfluidic Solid-Phase ELISA Using an Actuatable Microwell-Patterned PDMS Chip”, Lab on a Chip, 2013, 13, 4190-4197
Shuga, J;†Zeng, Y;† Novak, R; Lan, Q; Tang, X; Rothman, N; Li, L; Hubbard, A; Zhang, L; Mathies, RA; Smith, MT “Single Molecule Quantitation and Sequencing of Rare Translocations Using Microfluidic Nested Digital PCR”, Nucl. Acids Res. 2013, 41 (16): e159 (†Equal contribution)
Zeng, Y; Wang, T “Quantitative Microfluidic Biomolecular Analysis for Systems Biology and Medicine” Analytical and Bioanalytical Chemistry, 2013, 405, 5743-5758.
Y. Zeng,* M. Shin, T. Wang, “Programmable Active Microfluidic Droplet Generation Enabled by Integrated Pneumatic Micropumps”, Lab on a Chip, 2013, 13, 267-273. (*Corresponding author)
R. Novak,* Y. Zeng,* J. Shuga, G. Venugopalan, D. Fletcher, L. Zhang, M. T. Smith, R. A. Mathies, “Single Cell Multiplex Gene Detection and Sequencing Using Microfluidically-Generated Agarose Emulsions”, Angew. Chem. Int. Ed., 2011, 50, 390-395. (*Equal contribution)
E. C. Jensen,* Y. Zeng,* J. K. Kim, R. A. Mathies, “Microvalve Enabled Digital Microfluidic Systems for High Performance Biochemical and Genetic Analysis”, Journal of Association for Lab Automation, 2010, 15, 455-463. (*Equal contribution)
J. Shuga, Y. Zeng, R. Novak, R. A. Mathies, P. Hainaut, M. T. Smith, “Selected Technologies for Measuring Acquired Genetic Damage in Humans”, Environmental and Molecular Mutagenesis, 2010, 51, 851-870
Y. Zeng, R. Novak, J. Shuga, M. T. Smith, R. A. Mathies, “High-Performance Single Cell Genetic Analysis Using Microfluidic Emulsion Generator Arrays”, Anal. Chem., 2010, 82, 3183-3190.
M. He, J. Bao, Y. Zeng, D. J. Harrison, “Parameters Governing Flow Properties of Porous Monoliths Photopatterned within Microfluidic Channels”, Electrophoresis, 2010, 31, 2422-2428.
Y. Zeng, M. He, D. J. Harrison, “Microfluidic Self-Patterning of Large-Scale Crystalline Nanoarrays for High-Throughput Continuous DNA Fractionation”, Angew. Chem. Int. Ed. 2008, 47, 6388–6391.