研究领域
Physical Chemistry/Materials Chemistry
Our research focuses on the computation of molecular properties that are important in many areas of chemistry and other physical sciences. These properties are obtained when considering how a molecule interacts with electric and magnetic fields, for example, or when considering what happens to the electronic structure when the atoms in a molecule vibrate. We study a variety of inorganic and organic molecules, nanotubes, metal nanoclusters, fullerenes as well as models for systems that are of importance in biochemistry and materials science. Further, we develop theoretical methods and computer programs for such computations. These methods are applicable to molecules that contain atoms from the whole periodic table. We are collaborating with several research groups around the world. Currently, our efforts are concentrated on:
Development and improvement (speed, accuracy, size of the molecules that can be studied) of theoretical methods and computer programs for the first-principles calculation of molecular response properties.
Nano-scale systems such as carbon nanotubes: Can we potentially learn something useful about nanotubes using NMR?
Computations for molecules with heavy (4d and 5d) transition metal atoms as well as lanthanide and actinide complexes by employing relativistic methods, with a focus on magnetic properties such as magnetic resonance parameters.
Ab-initio molecular dynamics to describe solvent effects on NMR parameters and to calculate NMR relaxation rates.
Developing and applying intuitive analyses for the interpretation of chemical trends of molecular response properties (using localized orbitals).
Vibrational corrections to molecular properties.
Vibrational optical activity.
Optical activity of organic molecules in solution, studied with the help of molecular dynamics.
Catalysts: relation of structure, bonding, and catalytic properties to observable spectroscopic features, in particular characteristic NMR parameters.
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Greif, A.; Hrobarik, P.; Arbuznikov, A.; Autschbach, J.; Kaupp, M., ‘A relativistic quantum-chemical analysis of the trans influence on 1H NMR shifts in square planar Pt(II) complexes’, submitted.
Bolvin, H.; Autschbach, J., ‘Relativistic methods for calculating Electron Paramagnetic Resonance (EPR) parameters’, in Liu, W. (editor), ‘Handbook of Relativistic Quantum Chemistry’, Springer, Berlin, submitted.
Saleh, N.; Srebro, M.; Reynaldo, T.; Vanthuyne, N.; Toupet, L.; Chang, V. Y.; Muller, G.; Williams, J. A. G.; Roussel, C.; Autschbach, J.; Crassous, J., ‘Enantio-enriched CPL-active helicene-bipyridine-rhenium complexes’, Chem. Commun. in press.
Saleh, N.; Moore, II, B.; Srebro, M.; Vanthuyne, N.; Toupet, L.; Williams, J. A. G.; Roussel, C.; Deol, K. K.; Muller, G.; Autschbach, J.; Crassous, J., ‘Acid-base triggered switching of circularly polarized luminescence and electronic circular dichroism in organic and organometallic helicenes’, Chem. Eur. J. accepted.
Autschbach, J.; Govind, N.; Atta-Fynn, R.; Bylaska, E. J.; Weare, J. H.; de Jong, W. A., ‘Computational tools for predictive modeling of properties in complex actinide systems’, in Dolg, M. (editor), ‘Computational methods in lanthanide and actinide chemistry’, John Wiley & Sons, 2015.
Martin, R.; Autschbach, J., ‘Temperature dependence of contact and dipolar NMR chemical shifts in paramagnetic molecules’, J. Chem. Phys. 2015, 142, 054108. URL http://dx.doi.org/10.1063/1.4906318
Sharkas, K.; Autschbach, J., ‘Effects from spin-orbit coupling on electron-nucleus hyperfine coupling calculated at the restricted active space level for Kramers doublets’, J. Chem. Theory Comput. 2015, 11, 538–549. URL http://dx.doi.org/10.1021/ct500988h
Gendron, F.; Le Guennic, B.; Autschbach, J., ‘Magnetic properties and electronic structures of Ar3UIV–L complexes with Ar = C5(CH3)4H- or C 5H5- and L = CH 3, NO, and Cl’, Inorg. Chem. 2014, 53, 13174–13187. URL http://dx.doi.org/10.1021/ic502365h
Moore, II, B.; Azzam, C.-E.; Planchat, A.; Adamo, C.; Autschbach, J.; Jacquemin, D., ‘Electronic Band Shapes Calculated with Optimally-Tuned Range-Separated Hybrid Functionals’, J. Chem. Theory Comput. 2014, 10, 4599–4608. URL http://dx.doi.org/10.1021/ct500712w
Autschbach, J., ‘Calculating NMR chemical shifts and J-couplings for heavy-element compounds’, in Meyers, R. A. (editor), ‘Encyclopedia of Analytical Chemistry’, John Wiley & Sons, Chichester, UK, 2014. URL http://dx.doi.org/10.1002/9780470027318.a9173
O’Keefe, C.; Johnston, K.; Sutter, K.; Autschbach, J.; Gauvin, R.; Trebosc, J.; Delevoye, L.; Popoff, N.; Taoufik, M.; Oudatchin, K.; Schurko, R., ‘An Investigation of Chlorine Ligands in Transition-Metal Complexes via 35Cl Solid-State NMR: and Density Functional Theory Calculations’, Inorg. Chem. 2014, 53, 9581–9597. URL http://dx.doi.org/10.1021/ic501004u
Hu, Z.; Autschbach, J.; Jensen, L., ‘Simulation of resonance hyper-Rayleigh scattering of molecules and metal clusters using a time-dependent density functional theory approach’, J. Chem. Phys. 2014, 141, 124305. URL http://dx.doi.org/10.1063/1.4895971
Gendron, F.; Pritchard, B.; Bolvin, H.; Autschbach, J., ‘Magnetic Resonance Properties of Actinyl Carbonate Complexes and Plutonyl(VI)-tris-nitrate’, Inorg. Chem. 2014, 53, 8577–8592. URL http://dx.doi.org/10.1021/ic501168a
Autschbach, J.; Srebro, M., ‘Delocalization error and ‘functional tuning’ in Kohn-Sham calculations of molecular properties’, Acc. Chem. Res. 2014, 47, 2592–2602. URL http://dx.doi.org/10.1021/ar500171t
Ziegler, T.; Krykunov, M.; Autschbach, J., ‘Derivation of the RPA (Random Phase Approximation) Equation of ATDDFT (Adiabatic Time Dependent Density Functional Ground State Response Theory) from an Excited State Variational Approach Based on the Ground State Functional’, J. Chem. Theory Comput. 2014, 10, 3980–3986. URL http://dx.doi.org/10.1021/ct500385a
Zhekova, H.; Krykunov, M.; Autschbach, J.; Ziegler, T., ‘Applications of Time Dependent and Time Independent Density Functional Theory to the First π to π* Transition in Cyanine Dyes’, J. Chem. Theory Comput. 2014, 10, 3299–3307. URL http://dx.doi.org/10.1021/ct500292c
Pritchard, B.; Simpson, S.; Zurek, E.; Autschbach, J., ‘Computation of chemical shifts for paramagnetic molecules: A laboratory experiment for the undergraduate curriculum’, J. Chem. Educ. 2014, 91, 1058–1063. URL http://dx.doi.org/10.1021/ed400902c
Gendron, F.; Páez-Hernández, D.; Notter, F.-P.; Pritchard, B.; Bolvin, H.; Autschbach, J., ‘Magnetic properties and electronic structure of neptunylVI complexes: Wavefunctions, orbitals, and crystal-field models’, Chem. Eur. J. 2014, 20, 7994–8011. URL http://dx.doi.org/10.1002/chem.201305039
Rohwer, L.; Höhn, C.; Autschbach, J.; Bauer, W.; Heinemann, F. W.; Torrell, S. H.; Keller, I.; Shubina, T.; Steffen, J.; ; Zenneck, U., ‘Optically Active Tetra-/tert-/butyl-P5-deltacyclene Epimers: Preparation, Spectroscopy, Dynamic Equilibriums, H-D Exchange, and Transition Metal Complex Chemistry’, Chem. Eur. J. 2014, 20, 5708–5720. URL http://dx.doi.org/10.1002/chem.201303821
Shen, C.; Anger, E.; Srebro, M.; Vanthuyne, N.; Deol, K. K.; Jefferson, T. D.; Muller, G.; Williams, J. A. G.; Toupet, L.; Roussel, C.; Autschbach, J.; Réau, R.; Crassous, J., ‘Straightforward access to mono- and bis-cycloplatinated helicenes that display circularly polarized phosphorescence using crystallization resolution methods’, Chem. Sci. 2014, 5, 1915–1927. URL http://dx.doi.org/10.1039/C3SC53442A