当前位置: X-MOL首页全球导师 海外导师 › Peters, Jonas C

个人简介

B.S., University of Chicago, 1993; Ph.D., Massachusetts Institute of Technology; 1998. Assistant Professor, Caltech, 1999-2004; Associate Professor, 2004-06; Professor, 2006-09; Bren Professor, 2010-; Executive Officer, 2013-2016; Director, Resnick Sustainability Institute, 2015 - Jonas C. Peters is Bren Professor of Chemistry and Director of the Resnick Sustainability Institute at the California Institute of Technology. His research focuses on new concepts for catalysis (including electro- and photocatalysis) with applications in renewable solar fuel technologies, distributed nitrogen fixation for fertilizers and fuels, and chemical transformations fundamental to the synthesis of organic molecules. Peters earned his BSc degree at the University of Chicago ('93), spent a year as a Marshall Scholar at the University of Nottingham ('94), did his PhD at MIT ('98), and a postdoc as a Miller Fellow at UC Berkeley ('99). He has been on the faculty at Caltech since 1999, including a brief period on the faculty at MIT.

研究领域

Investigation of Electrocatalytic PCET Shuttles The efficient transfer of protons and electrons to substrates in a selective, coupled fashion is central to modern research efforts in electrocatalysis for solar fuels and organic synthesis. Proton-coupled electron-transfer (PCET) pathways are often the most efficient means of mediating challenging reductive (or oxidative) transformations. We are developing new classes of PCET reagents and catalysts, for example using metallocenes that can be protonated to install remarkably weak and hence reactive C–H bonds that deliver H-atoms, to enable new (electro)catalytic approaches in chemical synthesis and small-molecule reduction catalysis. Iron-Catalyzed Nitrogen/Ammonia Cycling Nitrogen fixation to ammonia (N2RR) and its reverse, ammonia oxidation (AO), are key challenges in catalysis that offer the promise of low- or zero-carbon fuels and fertilizers. Well-defined coordination complexes offer a means to constrain mechanistic hypotheses in enzymatic catalysis (e.g., nitrogen fixation by nitrogenase enzymes), and to develop new catalysts well suited to detailed mechanistic studies in their own right. Our group continues to discover fascinating iron and other metal catalyst systems in this vein with sample rich mechanistic landscapes that we continue to explore. Photoinduced Copper-Catalyzed C–N Coupling A wide array of nitrogen-containing compounds exhibit bioactivity, and new and versatile methods for the synthesis of Calkyl–N bonds, especially using secondary and tertiary alkyl electrophile coupling partners, are an important area for synthetic advances. In collaboration with the Fu group at Caltech we have reported the first examples of photoinduced, Cu-catalyzed Ullmann-type C–N couplings, including examples of enantioconvergent couplings. A common thread in this chemistry appears to be the intermediacy of an organic radical R•, generated by photoinduced single-electron transfer (SET), and a persistent copper(II) metalloradical, LnCu(II)-Nu. These radicals combine to form an R-Nu bond (Nu = nucleophile). We continue to explore methodological opportunities and fundamental mechanistic questions for these systems. Towards Solar Fuels via Electrocatalysis A central challenge towards the design and implementation of reductive fuel-forming electrocatalysts is substrate selectivity. The hydrogen evolution reaction (HER), of interest for H2 fuel, is often kinetically dominant and limits electrocatalytic reductions of other substrates (e.g., CO2, N2, nitrates). Our lab is exploring well-defined coordination complexes and heterogeneous surfaces as electrocatalysts for nitrogen fixation, key to enabling ammonia as a renewable fuel, as well as electrocatalytic CO2 fixation. For example, as part of the Joint Center for Artificial Photosynthesis (JCAP, supported by DOE) and the Liquid Sunlight Alliance (LiSA, also supported by DOE), our group, in collaboration with the Agapie lab at Caltech and other groups, has studied the efficacy of molecular additives on copper and other electrodes as a means of tuning their electrocatalytic CO2 conversion properties.

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Photodriven Sm(III)-to-Sm(II) Reduction for Catalytic Applications Johansen, C. M.; Boyd, E. A.; Tarnopol, D. E.; Peters, J. C.* JACS, 2024, Available Online Electrochemical CO2 Reduction in Acidic Electrolytes: Spectroscopic Evidence for Local pH Gradients Hicks, M.; Nie, W.; Boehme, A. E.; Atwater, H. A.*; Agapie, T.*; Peters, J. C.* JACS, 2024, Available Online Reductive samarium (electro)catalysis enabled by SmIII-alkoxide protonolysis Boyd, E. A.; Shin, C.; Charboneau, D. J.; Peters, J. C.*; Reisman, S. E.* Science, 2024, 385, 847–853. Intermolecular Proton-Coupled Electron Transfer Reactivity from a Persistent Charge-Transfer State for Reductive Photoelectrocatalysis Garrido-Barros, P.; Romero, C. G.; Winkler, J. R.*; Peters, J. C.* JACS, 2024, 146, 18, 12750–12757. Potassium ion modulation of the Cu electrode-electrolyte interface with ionomers enhances CO2 reduction to C2+ products Heim, G. P.; Bruening, M. A,; Musgrave III, C. B.; Goddard III, W. A.; Peters, J. C.; Agapie, T. Joule, 2024, 8, 1-10. Electrode Surface Heating with Organic Films Improves CO2 Reduction Kinetics on Copper Watkins, N. B.; Lai, Y.; Schiffer, Z. J.; Canestraight, V. M.; Atwater, H. A.; Agapie*, T.; Peters*, J. C.; Gregoire*, J. M. ACS Energy Lett., 2024, 9, 1440-1445. Catalytic Reduction of Cyanide to Ammonia and Methane at a Mononuclear Fe Site Johansen, C. M.; Peters*, J. C. J. Am. Chem. Soc., 2024, 146, 8, 5343-5354. Improving Molecular Iron Ammonia Oxidation Electrocatalysts via Substituent Effects that Modulate Standard Potential and Stability Zott, M. D.; Peters*, J. C. ACS. Catal., 2023, 13, 21, 14052-14057. Highly Selective Fe-Catalyzed Nitrogen Fixation to Hydrazine Enabled by Sm(II) Reagents with Tailored Redox Potential and pKa Boyd, E. A.; Peters*, J. C. J. Am. Chem. Soc., 2023, 145, 27, 14784-14792. Highly Selective Fe-Catalyzed Nitrogen Fixation to Hydrazine Enabled by Sm(II) Reagents with Tailored Redox Potential and pKa Advancing Electrocatalytic Nitrogen Fixation: Insights from Molecular Systems Peters*, J. C. Faraday Discuss., 2023, 243, 450-472. Hydrodynamics Change Tafel Slopes in Electrochemical CO2 Reduction on Copper Watkins, N. B.; Schiffer, Z.; Lai, Y.; Musgrave III, C.; Atwater, H. A.; Goodard III, W. A.; Agapie*, T.; Peters*, J. C.; Gregoire*, J. M. ACS Energy Lett., 2023, 8, 2185-2192. Electrocatalytic Nitrogen Reduction on a Molybdenum Complex Bearing a PNP Pincer Ligand Ibrahim, A. F.; Garrido-Barros, P.; Peters, J. C.* ACS Catal., 2023, 13, 1, 72-78. In Situ Deposited Polyaromatic Layer Generates Robust Copper Catalyst for Selective Electrochemical CO2 Reduction at Variable pH Watkins, N. B.; Wu, Y.; Nie, W.; Peters, J. C.*; Agapie, T.* ACS Energy Lett., 2023, 8, 1, 189-195. Organic Additive-derived Films on Cu Electrodes Promote Electrochemical CO2 Reduction to C2+ Products Under Strongly Acidic Conditions Nie, W.; Heim, G. P.; Watkins, N. B.; Agapie, T.*; Peters, J. C.* Angew. Chem. Int. Ed., 2023 - Available Online. Light Alters the NH3 vs N2H4 Product Profile in Iron-catalyzed Nitrogen Reduction via Dual Reactivity from an Iron Hydrazido (Fe=NNH2) Intermediate Garrido-Barros, P.; Chalkley, M. J.; Peters, J. C. Angew. Chem. Int. Ed., 2023, 62, 9, e202216693. Sm(II)-Mediated Proton-Coupled Electron Transfer: Quantifying Very Weak N–H and O–H Homolytic Bond Strengths and Factors Controlling Them Boyd, E.; Peters*, J. C. J. Am. Chem. Soc., 2022, 144, 46, 21337-21346. Catalytic Transfer Hydrogenation of N2 to NH3 via a photoredox catalysis strategy Johansen, C.; Boyd, E.; Peters*, J.C. Science Advances, 2022, 8, 43, eade3510. Use of a PCET Mediator Enables a Ni-HER Electrocatalyst to Act as a Hydride Delivery Agent Derosa, J.; Garrido-Barros, P.; Li, M.; Peters*, J. C. J. Am. Chem. Soc., 2022, 144, 43, 20118-20125. Characterization of a Proposed Terminal Iron(III) NitrideIntermediate of Nitrogen Fixation Stabilized by a Trisphosphine-Borane Ligand Schild, D. J.; Nurdin, L.; Moret, M-E.; Oyala*, P. H.; Peters*, J. C. Angew. Chem. Int. Ed., 2022, 61, e202209655. Mechanism of a Luminescent Dicopper System That Facilitates Electrophotochemical Coupling of Benzyl Chlorides via a Strongly Reducing Excited State Zott, M. D.; Canestraight, V. M.; Peters*, J. C. ACS Catal., 2022, 12, 10781-10786. Electrocatalytic Ketyl-Olefin Cyclization at a Favorable Applied Bias Enabled by a Concerted Proton–Electron Transfer Mediator Derosa, J.; Garrido-Barros, P.; Peters*, J. C. Inorg. Chem., 2022, 61, 17, 6672-6678. Photoinduced, Copper-Catalyzed Enantioconvergent Alkylations of Anilines by Racemic Tertiary Electrophiles: Synthesis and Mechanism Cho, H.; Suematsu, H.; Oyala, P. H.; Peters*, J. C.; Fu*, G. C. J. Am. Chem. Soc., 2022, 144, 10, 4550-4558. Molecular Coatings Improve the Selectivity and Durability of CO2 Reduction Chalcogenide Photocathodes Lai, Y.; Watkins, N. B.; Muzzillo, C.; Richter, M.; Kan, K.; Zhou, L.; Haber, J. A.; Zakutayev, A.; Peters, J. C.; Agapie, T.; Gregoire, J. M. ACS Energy Lett., 2022, 7, 3, 1195-1201. Investigation of the C–N Bond-Forming Step in a Photoinduced, Copper-Catalyzed Enantioconvergent N–Alkylation: Characterization and Application of a Stabilized Organic Radical as a Mechanistic Probe Lee, H.; Ahn, J.-M.; Oyala, P. H.; Citek, C.; Yin, H.; Fu, G. C.; Peters, J. C. J. Am. Chem. Soc., 2022, 144, 9, 4114-4123. Tandem electrocatalytic N2 fixation via proton-coupled electron transfer Garrido-Barros, P.; Derosa, J.; Chalkley, M. J.; Peters, J. C. Nature, 2022, 609, 71-76. Synthesis and functionalization reactivity of Fe-thiocarbonyl and thiocarbyne complexes Deegan, M. M.; Peters, J. C. Polyhedron, 2021, 209, 115461, 1-9. Breaking Scaling Relationships in CO2 Reduction on Copper Alloys with Organic Additives Lai, Y.; Watkins, N. B.; Rosas-Hernández, A.; Thevenon, A.; Hein, G. P.; Zhou, L.; Wu, Y.; Peters, J. C.; Gregoire, J. M.; Agapie, T. ACS Cent. Sci., 2021, 1756-1762. Glycerol Oxidation Pairs with Carbon Monoxide Reduction for Low-Voltage Generation of C2 and C3 Product Streams Yadegari, H.; Ozden, A.; Alkayyali, T.; Soni, V.; Thevenon, A.; Rosas-Hernández, A.; Agapie, T.; Peters, J. C.; Sargent, E. H.; David Sinton, D. ACS Energy Lett., 2021, 3538–3544. Photoinduced copper-catalysed asymmetric amidation via ligand cooperativity Chen, C.; Peters, J. C.; Fu., G. C. Nature, 2021, 596, 250-256. Electrocatalytic Reduction of C–C π-Bonds via a Cobaltocene-Derived Concerted Proton-Electron Transfer Mediator: Fumarate Hydrogenation as a Model Study Derosa, J.; Garrido-Barros, P.; Peters, J. C. J. Am. Chem. Soc., 2021, 143, 25, 9303-9307. Enhanced Ammonia Oxidation Catalysis by a Low-Spin Iron Complex Featuring Cis Coordination Sites Zott, M. D.; Peters, J. C. J. Am. Chem. Soc., 2021, 143, 20, 7612–7616. Dramatic HER Suppression on Ag Electrodes via Molecular Films for Highly Selective CO2 to CO Reduction Thevenon, A.; Rosas-Hernández, A.; Fontani Herreros, A. M.; Agapie, T.; Peters, J. C. ACS Catal., 2021, 11, 8, 4530–4537. Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene Ozden, A.; Wang, Y.; Li, F.; Luo, M.; Sisler, J.; Thevenon, A.; Rosas-Hernández, A.; Burdyny, T.; Lum, Y.; Yadegari, H.; Agapie, T.; Peters, J. C.; Sargent, E. H.; Sinton, D. Joule, 2021, 5, 3, 706-719 Tripodal P3XFe–N2 Complexes (X = B, Al, Ga): Effect of the Apical Atom on Bonding, Electronic Structure, and Catalytic N2-to-NH3 Conversion Fajardo Jr., J.; Peters, J. C. Inorg. Chem., 2021, 60, 2, 1220-1227. Hydrazine Formation via Coupling of a Nickel(III)-NH2 Radical Gu, N. X.; Oyala, P.; Peters, J. C. Angew. Chem. Int. Ed., 2021, 60, 4009-4013. Generating potent C-H PCET donors: Ligand-induced Fe-to-ring proton migration from a Cp*FeIII-H complex demonstrates a promising strategy Schild, D. J.; Drover, M. W; Oyala, P.; Peters, J. C. J. Am. Chem. Soc., 2020, 142, 44, 18963–18970. Exploring the Limits of Dative Boratrane Bonding: Iron as a Strong Lewis Base in Low-Valent Non-Heme Iron-Nitrosyl Complexes Dong, H. T.; Chalkley, M. J.; Oyala, P. H.; Zhao, J.; Alp, E. E.; Hu, M. Y.; Peters, J. C.; Lehnert, N. Inorg. Chem., 2020, 59, 20, 14967–14982. A molecular mediator for reductive concerted proton-electron transfers via electrocatalysis Chalkley, M. J.; Garrido-Barros, P.; Peters, J. C. Science, 2020, 369, 850-854. Dihydrogen Adduct (Co-H2) Complexes Displaying H-atom and Hydride Transfer Deegan, M. M.; Hannoun, K. I.; Peters, J. C. Angew. Chem. Int. Ed., 2020, 59, 22631-22637. High-Rate and Efficient Ethylene Electrosynthesis Using a Catalyst/Promoter/Transport Layer Ozden, A.; Li, F.; Garciá de Arquer, F. P.; Rosas-Hernández, A.; Thevenon, A.; Wang, y.; Hung, S. F.; Wang, X.; Chen, B.; Li, J.; Wicks, J.; Luo, M.; Wang, Z.; Agapie, T.; Peters, J. C.; Sargent, E. H.; Sinton, D. ACS Energy Lett., 2020, 5, 2811-2818. Catalytic N2-to-NH3 (or -N2H4) Conversion by Well-Defined Molecular Coordination Complexes Chalkley, M. J.; Drover, M. W.; Peters, J. C. Chem. Rev., 2020, 120, 5582-5636. H2 Evolution from a Thiolate-Bound Ni(III) Hydride Gu, N. X; Oyala, P. H.; Peters, J. C. J. Am. Chem. Soc, 2020, 7827-7835. Relating N–H Bond Strengths to the Overpotential for Catalytic Nitrogen Fixation Chalkley, M. J.; Peters, J. C. Eur. J. Inorg. Chem, 2020, 1353-1357. Molecular tuning of CO2-to-ethylene conversion Li, F.; Thevenon, A.; Rosas-Hernández, A.; Wang, Z.; Li, Y.; Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y.; Edwards, J. P.; Xu, Y.; McCallum, C.; Tao, L.; Liang, Z. Q.; Luo, M.; Wang, X.; Li, H.; O'Brien, C. P.; Tan, C. S.; Nam, D. H.; Quintero-Bermudez, R.; Zhuang, T. T.; Li, Y. C.; Han, Z.; Britt, R. D.; Sinton, D.; Agapie, T.; Peters, J. C.; Sargent, E. H. Nature, 2020, 577, 509-513. Molecular enhancement of heterogeneous CO2 reduction Nam, D.H.; De Luna, P.; Rosas-Hernandez, A.; Thevenon, A.; Li, F.; Agapie, T.; Peters, J.C.; Shekhah, O.; Eddaoudi, M.; Sargent, E.H. Nature Materials, 2020, 19, 266-276.

推荐链接
down
wechat
bug