研究领域
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Protein Kinase Signalling in Neuronal Function
Protein phosphorylation is a rapid and reversible molecular switch used for intracellular signalling in diverse cell biological processes. The Evans lab studies the role of protein phosphorylation in a range of neuronal processes in the healthy and diseased brain, including development, learning, neurodegeneration and neuroblastoma.
The human genome encodes over 500 kinase enzymes, grouped in families that phosphorylate proteins within specific motifs. The effects of phosphorylation are diverse and include altering protein-protein interactions, enzyme activity or subcellular localisation. Identifying the specific substrates of each kinase is important because inherited and acquired mutations in kinases and their substrates are linked with a wide range of diseases, including cancer and neurological disorders.
The Evans lab employs a variety of biochemical, proteomic, cell biological and fluorescence imaging approaches to study kinases and determine the function of their specific protein phosphorylation events. Our major goal is to determine the role of Src tyrosine kinase isoforms (C-Src, N1-Src and N2-Src) in the brain. Specific neuronal splicing events yield kinases that differ by just a few amino acids and yet have profoundly different functions. The N-Srcs have a role in neuronal development and their high expression is linked with a good prognosis in the childhood developmental cancer, neuroblastoma. We are investigating which N-Src substrates are linked with neuroblastoma prognosis and whether they provide a novel route to therapy