当前位置: X-MOL首页全球导师 海外导师 › Shu, Will

个人简介

Professor Will Wenmiao Shu is the Hay Chair in Biomedical Engineering and Director of Research at the Department of Biomedical Engineering, University of Strathclyde (Glasgow). He obtained his PhD at the Engineering Department (specialised in Electrical Engineering and Nanoscience), University of Cambridge. Following his postdoctoral work at Cambridge University, he worked at Heriot-Watt University in Edinburgh's School of Engineering and Physical Sciences as a lecturer (2007-2012) and a Reader (2012-2016) of Biomedical Microenginering. His research interests cover a range of biomedical engineering topics including 3D biofabrication, bioprinting, biosensors, microsystems and their applications for regenerative medicine. He led the research to demonstrate the first bioprinting of human embryonic stem cells (h-ESCs) and human induced pluripotent stem cells (h-iPSCs), paving the way for their applications on animal-free drug testing and 3D printed organs. He was one of the founding members (and now an emeritus member) of Royal Society of Edinburgh’s Young Academy and held a visiting position at Stanford University. He is an editorial board member for IOP Biofabrication Journal and served as a board director of the International Society for Biofabrication (ISBF).

研究领域

His research interests cover a range of biomedical engineering topics including 3D biofabrication, bioprinting, biosensors, microsystems and their applications for regenerative medicine.

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Printing cell embedded sacrificial strategy for microvasculature using degradable DNA biolubricant Shi, J., Wan, Y., Jia, H., Skeldon, G., Cornelissen, D. J., Wesencraft, K., Wu, J., McConnell, G., Chen, Q., Liu, D. & Shu, W., 26 Oct 2024, (E-pub ahead of print) In: Angewandte Chemie International Edition. 12 p., e202417510. Near real-time estimation of blood loss and flow-pressure re-distribution during unilateral nephrectomy Cowley, J., Kyeremeh, J., Stewart, G. D., Luo, X., Shu, W. & Kazakidi, A., 13 Sept 2024, In: Fluids. 9, 9, 18 p., 214. Dynamic healing-assembly for biocompatible, biodegradable, stretchable and self-healing triboelectric nanogenerators Shen, A., Xuan, H., Jia, Y., Gu, S., Neisiany, R. E., Shu, W., Sun, W. & You, Z., 1 Jul 2024, In: Chemical Engineering Journal. 491, 11 p., 151896. Exploiting light-based 3D-printing for the fabrication of mechanically enhanced, patient-specific aortic grafts Asciak, L., Domingo-Roca, R., Dow, J. R., Brodie, R., Paterson, N., Riches, P. E., Shu, W. & McCormick, C., 30 Jun 2024, In: Journal of the Mechanical Behavior of Biomedical Materials. 154, 13 p., 106531. Understanding the role of biofilms in acute recurrent tonsillitis through 3D bioprinting of a novel gelatin-PEGDA hydrogel Denton, O., Wan, Y., Beattie, L., Jack, T., McGoldrick, P., McAllister, H., Mullan, C., Douglas, C. M. & Shu, W., 21 Feb 2024, In: Bioengineering. 11, 3, 18 p., 202. A mathematical model of blood loss during renal resection Cowley, J., Luo, X., Stewart, G. D., Shu, W. & Kazakidi, A., 10 Dec 2023, In: Fluids. 8, 12, 21 p., 316. Stratified tissue biofabrication by rotational internal flow layer engineering Holland, I., Shu, W. & Davies, J. A., 1 Oct 2023, In: Biofabrication. 15, 4, 14 p., 045003. Three-dimensional biofabrication of nanosecond laser micromachined nanofibre meshes for tissue engineered scaffolds McWilliam, R. H., Chang, W., Liu, Z., Wang, J., Han, F., Black, R. A., Wu, J., Luo, X., Li, B. & Shu, W., 28 Jun 2023, In: Biomaterials translational. 4, 2, p. 104-114 11 p. Mechanical mapping of the prostate in vivo using Dynamic Instrumented Palpation: towards an in vivo strategy for cancer assessment Reuben, R. L., Hammer, S. J., Johnson, O., Good, D. W., Palacio-Torralba, J., Candito, A., Chen, Y., Phipps, S., Shu, W. & McNeill, S. A., 31 May 2023, In: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 237, 5, p. 571-584 14 p. Composite bioinks that can be injected or 3D bioprinted to aid osteochondral defect repair Turnbull, G., Picard, F., Clarke, J., Li, B. & Shu, W., 11 Apr 2023, In: Orthopaedic Proceedings. 105-B, SUPP_8, p. 108-108 1 p. Engineered periosteum-diaphysis substitutes with biomimetic structure and composition promote the repair of large segmental bone defects Yu, L., Wei, Q., Li, J., Wang, H., Meng, Q., Xie, E., Li, Z., Li, K., Shu, W. W., Wu, J., Yang, L., Cai, Y., Han, F. & Li, B., 1 Mar 2023, In: Composites Part B: Engineering. 252, 110505. Building osteogenic microenvironments with a double-network composite hydrogel for bone repair Li, J., Ma, J., Feng, Q., Xie, E., Meng, Q., Shu, W., Wu, J., Bian, L., Han, F. & Li, B., 10 Jan 2023, In: Research. 6, 15 p., 0021. Development of a 3D bio-artificial microvascular network on a chip Vidal-Roussel, L., Shu, W. & Wu, J., 7 Sept 2022. Plug and play: an innovative bio-artificial artery for vascular reconstruction Loewenhardt, W., Shu, W. & Wu, J., 7 Sept 2022. Endothelialized microvessels fabricated by microfluidics facilitate osteogenic differentiation and promote bone repair Wang, J., Wang, H., Wang, Y., Liu, Z., Li, Z., Li, J., Chen, Q., Meng, Q., Shu, W. W., Wu, J., Xiao, C., Han, F. & Li, B., 1 Apr 2022, In: Acta Biomaterialia. 142, p. 85-98 14 p. Sacrificial 3D printing of highly porous, soft pressure sensors Alsharari, M., Chen, B. & Shu, W., 31 Jan 2022, In: Advanced Electronic Materials. 8, 1, 12 p., 2100597. A bioprinted heart-on-a-chip with human pluripotent stem cell-derived cardiomyocytes for drug evaluation Faulkner-Jones, A., Zamora, V., Hortigon-Vinagre, M. P., Wang, W., Ardron, M., Smith, G. L. & Shu, W., 13 Jan 2022, In: Bioengineering. 9, 1, 14 p., 32. CD271 antibody-functionalized microspheres capable of selective recruitment of reparative endogenous stem cells for in situ bone regeneration Sun, H., Guo, Q., Shi, C., McWilliam, R. H., Chen, J., Zhu, C., Han, F., Zhou, P., Yang, H., Liu, J., Sun, X., Meng, B., Shu, W. & Li, B., 10 Nov 2021, (E-pub ahead of print) In: Biomaterials. 280, 121243. 3D bioprinting of complex, cell-laden alginate constructs Tabriz, A. G., Cornelissen, D. J. & Shu, W., 2021, Computer-Aided Tissue Engineering. Rainer, A. & Moroni, L. (eds.). New York, NY: Springer, p. 143-148 6 p. (Methods in Molecular Biology; vol. 2147). Biofabrication for soft tissue and cartilage engineering Turnbull, G., Clarke, J., Picard, F., Zhang, W., Riches, P., Li, B. & Shu, W., 31 Aug 2020, In: Medical Engineering and Physics . 82, p. 13-39 27 p. Carbon quantum dots derived from lysine and arginine simultaneously scavenge bacteria and promote tissue repair Li, P., Han, F., Cao, W., Zhang, G., Li, J., Zhou, J., Gong, X., Turnbull, G., Shu, W., Xia, L., Fang, B., Xing, X. & Li, B., 30 Jun 2020, In: Applied Materials Today. 19, 100601. The bioprinting roadmap Sun, W., Starly, B., Daly, A. C., Burdick, J. A., Groll, J., Skeldon, G., Shu, W., Sakai, Y., Shinohara, M., Nishikawa, M., Jang, J., Cho, D.-W., Nie, M., Takeuchi, S., Ostrovidov, S., Khademhosseini, A., Kamm, R. D., Mironov, V., Moroni, L. & Ozbolat, I. T., 30 Apr 2020, In: Biofabrication. 12, 2, 33 p., 022002. Three dimensional in vitro models of cancer: bioprinting multilineage glioblastoma models Hermida, M. A., Kumar, J. D., Schwarz, D., Laverty, K. G., Di Bartolo, A., Ardron, M., Bogomolnijs, M., Clavreul, A., Brennan, P. M., Wiegand, U. K., Melchels, F. P. W., Shu, W. & Leslie, N. R., 28 Feb 2020, In: Advances in Biological Regulation. 75, 14 p., 100658. Superior biological performance and osteoinductive activity of Si-containing bioactive bone regeneration particles for alveolar bone reconstruction Mao, Z., Gu, Y., Zhang, J., Shu, W. W., Cui, Y. & Xu, T., 1 Jan 2020, In: Ceramics International. 46, 1, p. 353-364 12 p. Rapid antibiotic susceptibility testing using low-cost, commercially available screen-printed electrodes Hannah, S., Addington, E., Alcorn, D., Shu, W., Hoskisson, P. A. & Corrigan, D. K., 1 Dec 2019, In: Biosensors and Bioelectronics. 145, 8 p., 111696. 3D Bioprinting of mature bacterial biofilms for antimicrobial resistance drug testing Ning, E., Turnbull, G., Clarke, J., Picard, F., Riches, P., Vendrell, M., Graham, D., Wark, A. W., Faulds, K. & Shu, W., 13 Sept 2019, In: Biofabrication. 11, 4, 13 p., 045018. Microfluidic fabrication of biomimetic helical hydrogel microfibers for blood-vessel-on-a-chip applications Jia, L., Han, F., Yang, H., Turnbull, G., Wang, J., Clarke, J., Shu, W., Guo, M. & Li, B., 11 Jul 2019, In: Advanced Healthcare Materials. 8, 13, 10 p., 1900435. Microfluidics-based fabrication of cell-laden hydrogel microfibers for potential applications in tissue engineering Wang, G., Jia, L., Han, F., Wang, J., Yu, L., Yu, Y., Turnbull, G., Guo, M., Shu, W. & Li, B., 25 Apr 2019, In: Molecules. 24, 8, 11 p., 1633. A hybrid paper-based microfluidic platform toward veterinary P-ELISA Busin, V., Burgess, S. & Shu, W., 10 Nov 2018, In: Sensors and Actuators, B: Chemical. 273, p. 536-542 7 p. Three-dimensional bioprinting of stem-cell derived tissues for human regenerative medicine Skeldon, G., Lucendo-Villarin, B. & Shu, W., 5 Jul 2018, In: Philosophical Transactions B: Biological Sciences . 373, 11 p., 20170224. 3D biofabrication for tubular tissue engineering Holland, I., Logan, J., Shi, J., McCormick, C., Liu, D. & Shu, W., 23 May 2018, (E-pub ahead of print) In: Bio-Design and Manufacturing. 12 p. Corrigendum to “A scalable syringe-actuated microgripper for biological manipulation” [Sens. Actuators A: Phys. 202 (2013) 135–139]Alogla, A., Scanlan, P., Shu, W. M. & Reuben, R. L., 15 Apr 2018, In: Sensors and Actuators, A: Physical. 273, p. 325 1 p.

推荐链接
down
wechat
bug