近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Morozov, Y. I., Parshin, A. V., Agaronyan, K., Cheung, A. C. M., Anikin, M., Cramer, P., & Temiakov, D. (2015). A model for transcription initiation in human mitochondria. Nucleic Acids Research, 43 (7), 3726-3735. doi:10.1093/nar/gkv235
Nagy, J., Grohmann, D., Cheung, A. C., Schulz, S., Smollett, K., Werner, F., & Michaelis, J. (2015). Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS. Nature communications, 6. doi:10.1038/ncomms7161
Mühlbacher, W., Mayer, A., Sun, M., Remmert, M., Cheung, A. C. M., Niesser, J., . . . Cramer, P. (2015). Structure of Ctk3, a subunit of the RNA polymerase II CTD kinase complex, reveals a noncanonical CTD-interacting domain fold. Proteins: Structure, Function and Bioinformatics, 83 (10), 1849-1858. doi:10.1002/prot.24869
Morozov, Y. I., Agaronyan, K., Cheung, A. C. M., Anikin, M., Cramer, P., & Temiakov, D. (2014). A novel intermediate in transcription initiation by human mitochondrial RNA polymerase. Nucleic Acids Research, 42 (6), 3884-3893. doi:10.1093/nar/gkt1356
Engel, C., Sainsbury, S., Cheung, A. C., Kostrewa, D., & Cramer, P. (2013). RNA polymerase I structure and transcription regulation. Nature, 502 (7473), 650-655. doi:10.1038/nature12712
Schwinghammer, K., Cheung, A. C., Morozov, Y. I., Agaronyan, K., Temiakov, D., & Cramer, P. (2013). Structure of human mitochondrial RNA polymerase elongation complex. Nat Struct Mol Biol, 20 (11), 1298-1303. doi:10.1038/nsmb.2683
Fouqueau, T., Zeller, M. E., Cheung, A. C., Cramer, P., & Thomm, M. (2013). The RNA polymerase trigger loop functions in all three phases of the transcription cycle. Nucleic Acids Res, 41 (14), 7048-7059. doi:10.1093/nar/gkt433
Cheung, A. C. M., & Cramer, P. (2012). A Movie of RNA Polymerase II Transcription. Cell, 149 (7), 1431-1437. doi:10.1016/j.cell.2012.06.006
Walmacq, C., Cheung, A. C. M., Kireeva, M. L., Lubkowska, L., Ye, C., Gotte, D., . . . Kashlev, M. (2012). Mechanism of Translesion Transcription by RNA Polymerase II and Its Role in Cellular Resistance to DNA Damage. Molecular Cell, 46 (1), 18-29. doi:10.1016/j.molcel.2012.02.006
Martinez-Rucobo, F. W., Sainsbury, S., Cheung, A. C. M., & Cramer, P. (2011). Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity. The EMBO Journal, 30 (7), 1302-1310. doi:10.1038/emboj.2011.64
Blattner, C., Jennebach, S., Herzog, F., Mayer, A., Cheung, A. C. M., Witte, G., . . . Cramer, P. (2011). Molecular basis of Rrn3-regulated RNA polymerase I initiation and cell growth. Genes & Development, 25 (19), 2093-2105. doi:10.1101/gad.17363311
Cheung, A. C. M., Sainsbury, S., & Cramer, P. (2011). Structural basis of initial RNA polymerase II transcription. The EMBO Journal, 30 (23), 4755-4763. doi:10.1038/emboj.2011.396
Cheung, A. C. M., & Cramer, P. (2011). Structural basis of RNA polymerase II backtracking, arrest and reactivation. Nature, 471 (7337), 249-253. doi:10.1038/nature09785
Hirtreiter, A., Damsma, G. E., Cheung, A. C., Klose, D., Grohmann, D., Vojnic, E., . . . Werner, F. (2010). Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif. Nucleic Acids Res, 38 (12), 4040-4051. doi:10.1093/nar/gkq135
Andrecka, J., Treutlein, B., Arcusa, M. A. I., Muschielok, A., Lewis, R., Cheung, A. C. M., . . . Michaelis, J. (2009). Nano positioning system reveals the course of upstream and nontemplate DNA within the RNA polymerase II elongation complex. Nucleic Acids Research, 37 (17), 5803-5809. doi:10.1093/nar/gkp601
Sydow, J. F., Brueckner, F., Cheung, A. C. M., Damsma, G. E., Dengl, S., Lehmann, E., . . . Cramer, P. (2009). Structural Basis of Transcription: Mismatch-Specific Fidelity Mechanisms and Paused RNA Polymerase II with Frayed RNA. Molecular Cell, 34 (6), 710-721. doi:10.1016/j.molcel.2009.06.002
Brueckner, F., Armache, K. -. J., Cheung, A., Damsma, G. E., Kettenberger, H., Lehmann, E., . . . Cramer, P. (2009). Structure–function studies of the RNA polymerase II elongation complex. Acta Crystallographica Section D Biological Crystallography, 65 (2), 112-120. doi:10.1107/S0907444908039875
Narayanan, A., Cheung, A., Gamalielsson, J., Keedwell, E., & Vercellone, C. (2005). Artificial Neural Networks for Reducing the Dimensionality of Gene Expression Data. In U. Seiffert, L. C. Jain, P. Schweizer (Eds.), Bioinformatics Using Computational Intelligence Paradigms (pp. 191-211). Springer Berlin Heidelberg.