当前位置: X-MOL首页全球导师 海外导师 › Robson, Paul

个人简介

I graduated in Microbiology and Virology and received a doctorate in molecular microbiology from Warwick University working with Professor David Hodgson. My PhD was studying the mechanism of light induction from a promoter controlling carotenogenesis in Myxobacteria. Since then I have worked in plant molecular biology and physiology, developing interests in the molecular mechanisms determining plant physiology and morphology. This included 7 years working with Professor Harry Smith at Leicester University studying photomorphogenesis and the biotechnological application of phytochrome. After a move to Aberystwyth I worked at IGER studying senescence and the induction of a stay-green phenotype in Maize (with Professor Howard Thomas); molecular determinants of apomixis (with Professor Philip Morris) and I now lead a project on Miscanthus Molecular Genetics and Crop Performance (with ).

研究领域

The aim of my research is to understand the molecular and physiological control of morphologies in Miscanthus that contribute to efficient resource capture and utilisation and to develop molecular tools to enable efficient breeding strategies in Miscanthus. The work will provide fundamental insight into the genetic and environmental interactions determining Miscanthus development and how morphological change and physiological processes contribute to the capture of light and water and to nutrient use efficiency. This project will also develop genetic resources for Miscanthus including a genetic map and will test the syntenic relationship with other crops. Research highlights include the following objectives: To determine variation in morphologies relevant to resource capture including, plant architecture, early season establishment, leaf area and senescence and to test the impact that these morphological changes have on resource capture and yield. To determine the morphological and physiological responses of Miscanthus to environmental signals in plot-based and controlled environment studies focusing initially on light as a resource and signal to reveal novel insights into photomorphogenesis in grass species. To develop markers and a genetic map for Miscanthus and to use markers for association and QTL mapping of morphological and compositional traits in Miscanthus. To determine the impact of senescence on crop quality, nutrient use efficiency and crop yield. To determine the extent of synteny with other crop species such as Sorghum and maize. To develop innovative phenotyping analyses including the use of high-throughput phenomics studies. To characterise gene expression in Miscanthus from senescence associated genes and abiotic stress genes.

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

McCalmont, J., Hastings, A., Mcnamara, N., Richter, G.M., Robson, P., Donnison, I., Clifton-Brown, J. 2017. Environmental costs and benefits of growing Miscanthus for bioenergy in the UK. GCB Bioenergy 9 (3) pp. 489-507. Cadair Malinowska, M., Donnison, I., Robson, P. 2017. Phenomics analysis of drought responses in Miscanthus collected from different geographical locations. GCB Bioenergy 9 (1) pp. 78-91. Cadair Clifton-Brown, J., Hastings, A., Mos, M., McCalmont, J., Ashman, C., Awty-Carroll, D., Cerazy, J., Chiang, Y., Cosentino, S., Cracroft-Eley, W., Scurlock, J., Donnison, I., Glover, C., Golab, I., Greef, J., Gwyn, J., Harding, G., Hayes, C., Helios, W., Hsu, T.W., Huang, L., Jezownski, S., Kim, D., Kiesel, A., Kotecki, A., Krzyzak, J., Lewandowski, I., Lim, S.H., Liu, J., Loosely, M., Meyer, H., Murphy-Bokern, D., Nelson, W., Pogrzeba, M., Robinson, G., Robson, P., Rogers, C., Scalici, G., Schuele, H., Shafiei, R., Shevchuk, O., Schwarz, K., Squance, M., Swaller, T., Thornton, J., Truckses, T., Botnari, V., Vizir, I., Wagner, M., Warren, R., Webster, R., Yamada, T., Youell, S., Xi, Q., Zong, J., Flavell, R. 2017. Progress in upscaling Miscanthus biomass production for the European bio-economy with seed-based hybrids. GCB Bioenergy 9 (1) pp. 6-17. Cadair Jensen, E., Robson, P., Farrar, K., Thomas Jones, S., Clifton-Brown, J., Payne, R., Donnison, I. 2017. Towards Miscanthus combustion quality improvement: the role of flowering and senescence. GCB Bioenergy Cadair Wootton-Beard, P., Xing, Y., Durai Prabhakaran, R.T., Robson, P., Bosch, M., Thornton, J., Ormondroyd, G., Jones, P., Donnison, I. 2016. Review: Improving the impact of plant science on urban planning and design. Buildings 6 (4) Cadair Davey, C., Nipper, R., Robson, P., Farrar, K., Clifton-Brown, J., Jensen, E., Donnison, I., Slavov, G. 2016. Selection and Genome-Wide Prediction of Phenology and Biomass Yield in Miscanthus. Plant and Animal Genome Conference XXIV, San Diego, California, United States of America, 09/01/2016 - 13/01/2016. Stavridou, E., Webster, R., Robson, P. 2016. The impact of soil salinity on the yield, composition and physiology of the bioenergy grass Miscanthus x giganteus. GCB Bioenergy 9 (1) pp. 92-104. Cadair Slavov, G.T., Nipper, R., Robson, P., Farrar, K., Allison, G.G., Bosch, M., Clifton-Brown, J.C., Donnison, I.S., Jensen, E. 2014. Genome-wide association studies and prediction of 17 traits related to phenology, biomass and cell wall composition in the energy grass Miscanthus sinensis. New Phytologist 201 (4) pp. 1227-1239. Cadair

推荐链接
down
wechat
bug