近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
“Node Distortion as a Tunable Mechanism for Negative Thermal Expansion in Metal-Organic Frameworks,” Chen, Z.; Stroscio, G. D.; Liu, J.; Lu, Z.; Hupp, J. T.; Gagliardi, L.; Chapman, K. W. J. Am. Chem. Soc., 2023, 145, 1, 268-276. DOI: 10.1021/jacs.2c09877
“Active-Site Determination and Mechanistic Insights in a MOF-Supported Polymerization Catalyst,” Goetjen, T. A.; Ferrandon, M. S.; Kropf, A. J.; Lamb, J. V.; Delferro, M.; Hupp, J. T.; Farha, O. K. J. Phys. Chem. C, 2022, 126, 48, 20388-20394. DOI: 10.1021/acs.jpcc.2c06643
“Computational Investigation of Metal Oxides as Candidate Hydrogen Storage Materials,” Goncalves, R. B.; Snurr, R. Q.; Hupp, J. T. J. Phys. Chem. C. 2022, 126, 44, 18661-18669. DOI: 10.1021/acs.jpcc.2c04556
“Toward Ideal Metal-Organic Framework Thin-Film Growth via Automated Layer-by-Layer Deposition: Examples Based on Perylene Diimide Linkers,” Goswami, S.; Rimoldi, M.; Anderson, R.; Lee, C.; Li, X.; Li, A.; Deria, P.; Chen, L. X.; Schaller, R. D.; Gomez-Gualdron, D. A.; Farha, O. K.; Hupp, J. T. Chem. Mater. 2022, 34, 21, 9446-9454. DOI: 10.1021/acs.chemmater.2c01753
“Light Harvesting Antenna Properties of Framework Solids,” Kramar, B. V.; Flanders, N. C.; Helweh, W.; Dichtel, W. R.; Hupp, J. T.; Chen, L. X. Acc. Mater. Res., 2022, 3, 11, 1149-1159. DOI: 10.1021/accountsmr.2c00137
“Tuning the Product Distribution of Acetylene Dimerization through Bimetallic Metal-Organic Framework-supported Nanoporous Systems,” Goetjen, T. A.; Kropf, A. J.; Alayoglu, S.; Delferro, M.; Hupp, J. T.; Farha, O. K. ACS Appl. Nano Mater. 2022, 5, 10, 14961-14969. DOI: 10.1021/acsanm.2c03201
“Noncovalent Surface Modification of Metal-Organic Frameworks: Unscrambling Adsorption Properties via Isothermal Titration Calorimetry,” Sheridan, T. R.; Gaidimas, M. A.; Kramar, B. V.; Goswami, S.; Chen, L. X.; Farha, O. K.; Hupp, J. T. Langmuir, 2022, 38, 37, 11199-11209. DOI: 10.1021/acs.langmuir.2c01223
“An iron-porphyrin grafted metal-organic framework as a heterogeneous catalyst for the photochemical reduction of CO2,” Zhang, K.; Goswami, S; Noh, H.; Lu, Z.; Sheridan, T.; Duan, J.; Dong, W.; Hupp, J. T. J. Photochem. Photobiol., 10, 2022, 1-8. DOI: 10.1016/j.jpap.2022.100111
“Cyclophane-based two-dimensional polymer formed by an interfacial click reaction”, Roy, I.; Evans, A. M.; Das, P. J.; Ateia, M.; Ryder, M. R.; Jones, L. O.; Kazem-Rostami, M.; Goswami, S.; Beldjoudi, Y.; Shen, D.; Schatz, G. C.; Hupp, J. T.; Dichtel, W. R.; Stoddart, J. F. Cell Rep. Phys. Sci., 2022, 3, 4, 1-13. DOI: 10.1016/j.xcrp.2022.100806
“BODIPY-Based Polymers of Intrinsic Microporosity for the Photocatalytic Detoxification of a Chemical Threat,” Atilgan, A.; Beldjoudi, Y.; Yu, J.; Kirlikovali, K. O.; Weber, J. A.; Liu, J.; Jung, D.; Deria, P.; Islamoglu, T.; Stoddart, J. F.; Farha, O. K.; Hupp, J. T. ACS Appl. Mater. Interfaces, 2022, 14, 10, 12596-12605. DOI: 10.1021/acsami.1c21750
“Investigating the Effect of Metal Nuclearity on Activity for Ethylene Hydrogenation by Metal-Organic Framework-Supported oxy-Ni(II) Catalysts,” Wang, Q.; Pengmei, Z.; Pandharkar, R.; Gagliardi, L.; Hupp, J. T.; Notestein, J. M. Journal of Catalysis, 2022, XXXX, XXX, XXX-XXX. DOI: 10.1016/j.jcat.2022.01.033
“An iron-porphyrin grafted metal-organic framework as a heterogeneous catalyst for the photochemical reduction of CO2,” Zhang, K.; Goswami, S.; Noh, H.; Lu, Z.; Sheridan, T. R.; Duan, J.; Dong, W.; Hupp, J. T. J. Photochem. Photobiol., 2022, 10, 1-8. DOI: 10.1016/j.jpap.2022.100111
“Understanding Diffusional Charge Transport within a Pyrene-Based Hydrogen-Bonded Organic Framework,” Goswami, S.; Ma, K.; Duan, J.; Kirlikovali, K. O.; Bai, J.; Hupp, J. T.; Peng, L.; Farha, O. K. Langmuir, 2022, 38, 4, 1533-1539. DOI: 10.1021/acs.langmuir.1c02915
“Identifying the Polymorphs of Zr-based Metal-Organic Frameworks via Time-Resolved Fluorescence Imaging,” Chen, X.; Jagadesan, P.; Valandro, S.; Hupp, J. T.; Schanze, K. S.; Goswami, S. ACS Materials Lett., 2022, 4, 2, 370-377. DOI: 10.1021/acsmaterialslett.1c00754
“Ethylene polymerization with a crystallographically well-defined metal–organic framework supported catalyst,” Goetjen, T. A.; Knapp, J. G.; Syed, Z. H.; Hackler, R. A.; Zhang, X.; Delferro, M.; Hupp, J. T.; Farha, O. K. Catal Sci Technol, 2022, XXXX, XXX, XXX-XXX. DOI: 10.1039/d1cy01990b
“Understanding Diffusional Charge Transport within a Pyrene-Based Hydrogen-Bonded Organic Framework,” Goswami, S; Ma, K.; Duan, J; Kirlikovali, K. O.; Bai, J.; Hupp, J. T.; Li, P.; Farha, O. K. Langmuir, 2022, 38, 4, 1533-1539. DOI: 10.1021/acs.langmuir.1c02915
“Identifying the Polymorphs of Zr-Based Metal–Organic Frameworks via Time-Resolved Fluorescence Imaging,” Chen, X.; Jagadesan, P.; Valandro, S.; Hupp, J. T.; Schanze, K. S.; Goswami, S. ACS Materials Lett., 2022, 4, 370-377. DOI: 10.1021/acsmaterialslett.1c00754
“MOF-enabled confinement and related effects for chemical catalyst presentation and utilization,” Liu, J.; Goetjen, T. A.; Wang, Q.; Knapp, J. G.; Wasson, M. C.; Yang, Y.; Syed, Z. H.; Delferro, M.; Notestein, J. M.; Farha, O. K.; Hupp, J. T. Chem Soc Rev, 2022, Advance Article XXXX, XXX, XXX-XXX. DOI: 10.1039/D1CS00968K
“An Electrically Conductive Tetrathiafulvalene-Based Hydrogen-Bonded Organic Framework,” Kirlikovali, K. O.; Goswami, S.; Mian, M. R.; Krzyaniak, M. D.; Wasielewski, M. R.; Hupp, J. T.; Li, P.; Farha, O. K. ACS Materials Lett., 2022, 4, 1, 128-135. DOI: 10.1021/acsmaterialslett.1c00628
to top)
“The Molecular Path Approaching the Active Site in Catalytic Metal–Organic Frameworks,” Platero-Prats, A. E.; Mavrandonakis, A.; Liu, J.; Chen, Z.; Chen, Z.; Li, Z.; Yakovenko, A. A.; Gallington, L. C.; Hupp, J. T.; Farha, O. K.; Cramer, C. J.; Chapman, K. W. J. Am. Chem. Soc., 2021, 143, 48, 20090-20094. DOI: 10.1021/jacs.1c11213
“Double-Walled Zn36@Zn104 Multicomponent Senary Metal–Organic Polyhedral Framework and Its Isoreticular Evolution,” Lu, Z.; Du, L.; Guo, R.; Zhang, G.; Duan, J.; Zhang, J.; Han, L.; Bai, J.; Hupp, J. T. J. Am. Chem. Soc., 2021, 143, 43, 17942-17946. DOI: 10.1021/jacs.1c08286
“Single-Atom Metal Oxide Sites as Traps for Charge Separation in the Zirconium-Based Metal-Organic Framework NDC-NU-1000,” Kramar, B. V.; Phelan, B. T.; Sprague-Klein, E. A.; Diroll, B. T.; Lee, S.; Otake, K.-I.; Palmer, R.; Mara, M. W.; Farha, O. K.; Hupp, J. T.; Chen, L. X. Energy Fuels, 2021, 35, 23, 19081-19095. DOI: 10.1021/acs.energyfuels.1c02623
“Art of Architecture: Efficient Transport through Solvent-Filled Metal-Organic Frameworks Regulated by Topology,” Wang, R.; Bukowski, B. C.; Duan, J.; Sui, J.; Snurr, R. Q.; Hupp, J. T. Chem. Mater., 2021, 33, 17, 6832-6840. DOI: 10.1021/acs.chemmater.1c01536
“Transport Diffusion of Linear Alkanes (C5-C16) through Thin Films of ZIF-8 as Assessed by Quartz Crystal Microgravimetry,” Audu, C. O.; Chen, D.; Kung, C.-W.; Snurr, R. Q.; Nguyen, S. T.; Farha, O. K.; Hupp, J. T. Langmuir, 2021, 37, 31, 9405-9414. DOI: 10.1021/acs.langmuir.1c00672
“Engineering Dendrimer-Templated, Metal-Organic Framework-Confined Zero-Valent, Transition-Metal Catalysts,” Yang, Y.; Noh, H.; Ma, Q.; Wang, R.; Chen, Z.; Schweitzer, N. M.; Liu, J.; Chapman, K. W.; Hupp, J. T. ACS Appl. Mater. Interfaces, 2021, 13, 30, 36232-36239. DOI: 10.1021/acsami.1c11541
“Two-Dimensional Pd Rafts Confined in Copper Nanosheets for Selective Semihydrogenation of Acetylene,” Fu, X.; Liu, J.; Kanchanakungwankul, S.; Hu, X.; Yue, Q.; Truhlar, D. G.; Hupp, J. T. Kang, Y. Nano Lett. 2021, 21, 13, 5620-5626. DOI: 10.1021/acs.nanolett.1c01124
“Product Inhibition and the Catalytic Destruction of a Nerve Agent Simulant by Zirconium-Based Metal-Organic Frameworks,” Liao, Y.; Sheridan, T. R.; Liu, J.; Farha, O. K.; Hupp, J. T. ACS Appl. Mater. Interfaces, 2021, 13, 26, 30565-30575. DOI: 10.1021/acsami.1c05062
“Zirconium Metal-Organic Frameworks Integrating Chloride Ions for Ammonia Capture and/or Chemical Separation,” Liu, J.; Chen, Z.; Wang, R.; Alayoglu, S.; Islamoglu, T.; Lee, S.-J.; Sheridan, T. R.; Chen, H.; Snurr, R. Q.; Farha, O. K.; Hupp, J. T. ACS Appl. Mater. Interfaces, 2021, 13, 19, 22485-22494. DOI: 10.1021/acsami.1c03717
“Ammonia Capture Within Zirconium Metal-Organic Frameworks: Reversible and Irreversible Uptake,” Liu, J.; Lu, Z.; Chen, Z.; Rimoldi, M.; Howarth, A. J.; Chen, H.; Alayoglu, S.; Snurr, R. Q.; Farha, O. K.; Hupp, J. T. ACS Appl. Mater. Interfaces, 2021, 13, 17, 20081-20093. DOI: 10.1021/acsami.1c02370
“Photon Upconversion in a Glowing Metal-Organic Framework,” Roy, I.; Goswami, S.; Young, R. M.; Schlesinger, I.; Mian, M. R.; Enciso, A. E.; Zhang, X.; Hornick, J. E.; Farha, O. K.; Wasielewski, M. R.; Hupp, J. T.; Stoddart, J. F., J. Am. Chem. Soc., 2021, 143, 13, 5053-5059. DOI: 10.1021/jacs.1c00298
“Light-Harvesting ‘Antenna’ Behavior in NU-1000,” Goswami, S.; Yu, J.; Patwardhan, S.; Deria, P.; Hupp, J. T. ACS Energy Lett. 2021, 6, 3, 848-853. DOI: 10.1021/acsenergylett.0c02514
“Tuning the Conductivity of Hexa-Zirconium (IV) Metal-Organic Frameworks by Encapsulating Heterofullerenes,” Ray, D.; Goswami, S.; Duan, J.; Hupp, J. T.; Cramer, C. J.; Gagliardi, L., Chem. Mater., 2021, 33, 4, 1182-1189. DOI: 10.1021/acs.chemmater.0c03855
“Vapor-Phase Cyclohexene Epoxidation by Single-Ion Fe(III) Sites in Metal-Organic Frameworks,” Otake, K-I.; Ahn, S.; Knapp, J.; Hupp, J. T.; Notestein, J. M.; Farha, O. K. Inorg. Chem., 2021, 60, 4, 2457-2463. DOI: 10.1021/acs.inorgchem.0c03364
“Isomer of Linker for NU-1000 Yields a New she-type, Catalytic, and Hierarchically Porous, Zr-based Metal-Organic Framework,” Lu, Z.; Wang, R.; Liao, Y.; Farha, O. K.; Bi, W.; Sheridan, T. R.; Zhang, K.; Duan, J.; Liu, J.; Hupp, J. T., Chem. Commun., 2021, 57, 3571-3574. DOI: 10.1039/d0cc07974j
“Modulation of CO2 Adsorption in Novel Pillar-Layered MOFs Based on Carboxylate-pyrazole Flexible Linker,” Lancheros, A.; Goswami, S.; Mian, M. R.; Zhang, X.; Zarate, X.; Schott, E.; Farha, O. K.; Hupp, J. T., Dalton Trans., 2021, 50, 2880-2890. DOI: 10.1039/d0dt03166f
to top)
“Structural Diversity of Zirconium Metal-Organic Frameworks and Effect on Adsorption of Toxic Chemicals,” Chen, Y.; Zhang, X.; Mian, M. R.; Son, F. A.; Zhang, K.; Cao, R.; Chen, Z.; Lee, S.-J.; Idrees, K. B.; Goetjen, T. A.; Lyu, J.; Li, P.; Xia, Q.; Li, Z.; Hupp, J. T.; Islamoglu, T.; Napolitano, A.; Peterson, G. W.; Farha, O. K., J. Am. Chem. Soc., 2020, 142, 51, 21428-21438. DOI: 10.1021/jacs.0c10400
“Unexpected ‘Spontaneous’ Evolution of Catalytic, MOF-Supported Single Cu(II) Cations to Catalytic, MOF-Supported Cu(0) Nanoparticles, Yang, Y.; Zhang, X.; Kanchanakungwankul, S.; Lu, Z.; Noh, H.; Syed, Z. H.; Farha, O. K.; Truhlar, D. G.; Hupp, J. T., J. Am. Chem. Soc., 2020, 142, 50, 21169-21177. DOI: 10.1021/jacs.0c10367
“Node-Accessible Zirconium MOFs,” Lu, Z.; Liu, J.; Zhang, X.; Liao, Y.; Wang, R.; Zhang, K.; Lyu, J.; Farha, O. K.; Hupp, J. T., J. Am. Chem. Soc., 2020, 142, 50, 21110-21121. DOI: 10.1021/jacs.0c09782
“Regioselective Functionalization of the Mesoporous Metal-Organic Framework, NU-1000, with Photo-active Tris-(2,2′-bipyridine)ruthenium (II),” Nagatomi, H.; Gallington, L. C.; Goswami, S.; Duan, J.; Chapman, K. W.; Yanai, N.; Kimizuka, N.; Farha, O. K.; Hupp, J. T., ACS Omega, 2020, 5, 46, 30299-30305. DOI: 10.1021/acsomega.0c04823
“Reactive Porous POlymers for Detoxification of a Chemical Warfare Agent Simulant,” Jung, D.; Das, P.; Atilgan, A.; Li, P.; Hupp, J. T.; Islamoglu, T.; Kalow, J. A.; Farha, O. K., Chem. Mater., 2020, 32, 21, 9299-9306. DOI: 10.1021/acs.chemmater.0c03160
“Post-Synthetically Elaborated BODIPY-Based Porous Organic Polymers (POPs) for the Photochemical Detoxification of a Sulfur Mustard Simulant,” Atilgan, A.; Cetin, M. M.; Yu, J.; Beldjoudi, Y.; Liu, J.; Stern, C. L.; Cetin, F. M.; Islamoglu, T.; Farha, O. K.; Deria, P.; Stoddart, J. F.; Hupp, J. T., J. Am. Chem. Soc., 2020, 142, 43, 18554-18564. DOI: 10.1021/jacs.0c07784
“Investigating the Process and Mechanism of Molecular Transport within a Representative Solvent-Filled Metal-Organic Framework,” Wang, R.; Bukowki, B. C.; Duan, J.; Sheridan, T. R.; Atilgan, A.; Zhang, K.; Snurr, R. Q; Hupp, J. T., Langmuir, 2020, 36, 36, 10853-10859. DOI: 10.1021/acs.langmuir.0c01999
“Insights into the Structure-Activity Relationships in Metal-Organic Framework-Supported Nickel Catalysts for Ethylene Hydrogenation,” Wang, X.; Zhang, X.; Pandharkar, R.; Lyu, J.; Ray, D.; Yang, Y.; Kato, S.; Liu, J.; Wasson, M. C.; Islamoglu, T.; Li, Z.; Hupp, J. T.; Cramer, C. J.; Gagliardi, L.; Farha, O. K. ACS Catal., 2020, 10, 16, 8995-9005. DOI: 10.1021/acscatal.0c01844
“Supramolecular Porous Organic Nanocomposites for Heterogeneous Phototcatalysis of a Sulfur Mustard Simulant,” Beldjoudi, Y.; Atilgan, A.; Weber, J. A.; Roy, I.; Young, R. M.; Yu, J.; Deria, P.; Enciso, A. E.; Wasielewski, M. R.; Hupp, J. T.; Stoddart, J. F., Adv. Mater., 2020, 32, 2001592. DOI: 10.1002/adma.202001592
“Stabilization of Low Valent Zirconium Nitrides in Titanium Nitride via Plasma-Enhanced Atomic Layer Deposition and Assessment of Electrochemical Properties,” Noh, H.; Jeon, N.; Martinson, A. B. F.; Hupp, J. T., ACS Appl. Energy Mater., 2020, 3, 6, 5095-5100. DOI: 10.1021/acsaem.0c00428
“Charge Transport in Zirconium-Based Metal-Organic Frameworks,” Kung, C.-W.; Goswami, S.; Hod, I.; Wang, T. C.; Duan, J.; Farha, O. K.; Hupp, J. T., Acc. Chem. Res., 2020, 53, 6, 1187-1195. DOI: 10.1021/acs.accounts.0c00106
“Structural Reversibility of Cu Doped NU-1000 MOFs Under Hydrogenation Conditions,” Halder, A.; Lee, S.; Yang, B.; Pellin, M. J.; Vajda, S.; Li, Z.; Yang, Y.; Farha, O. K.; Hupp, J. T., J. Chem. Phys., 2020, 152, 084703. DOI: 10.1063/1.5130600
“Zirconium-Based Metal-Organic Frameworks for the Catalytic Hydrolysis of Organophosphorous Nerve Agents,” Kirlikovali, K. O.; Chen, Z.; Islamoglu, T.; Hupp, J. T.; Farha, O. K., ACS Appl. Mater. Interfaces, 2020, 12, 13, 14702-14720. DOI: 10.1021/acsami.9b20154
“The Synthesis Science of Targeted Vapor-Phase Metal-Organic Framework Postmodification,” Kim, I. S.; Ahn, S.; Vermeulen, N. A.; Webber, T. E.; Gallington, L. C.; Chapman, K. W.; Penn, R. L.; Hupp, J. T.; Farha, O. K.; Notestein, J. M.; Martinson, A. B. F. J. Am. Chem. Soc., 2020, 142, 1, 242-250. DOI: 10.1021/jacs.9b10034
“Single-Site, Single-Metal-Atom, Heterogeneous Electrocatalyst: Metal-Organic-Framework Supported Molybdenum Sulfide for Redox Mediator-Assisted Hydrogen Evolution Reaction,” Noh, H.; Yang, Y.; Zhang, X.; Goetjen, T. A.; Syed, Z. H.; Lu, Z.; Ahn, S.; Farha, O. K.; Hupp, J. T., ChemElectroChem, 2020, 7, 2, 509-516. DOI: 10.1002/celc.201901650
“Metal-Organic Framework (MOF) Materials as Polymerization Catalysts: A Review and Recent Advances,” Goetjen, T. A.; Liu, J.; Wu, Y.; Sui, J.; Zhang, X.; Hupp, J. T.; Farha, O. K., Chem. Commun., 2020, 56, 10409-10418. DOI: 10.1039/D0CC03790G
“Squeezing the Box: Isoreticular Contraction of Pyrene-Based Linker in a Zr-Based Metal-Organic Framework for Xe/Kr Separation,” Maldonado, R. R.; Zhang, X.; Hanna, S.; Gong, X.; Gianneschi, N. C.; Hupp, J. T.; Farha, O. K., Dalton Trans., 2020, 49, 6554-6556. DOI: 10.1039/D0DT00546K
“Isobutane Dehydrogenation over Bulk and Supported Molybdenum Sulfide Catalysts,” Cheng, E.; McCullough, L.; Noh, H.; Farha, O. K.; Hupp, J. T.; Notestein, J. M., Ind. Eng. Chem. Res., 2020, 59, 3, 1113-1122. DOI: 10.1021/acs.iecr.9b05844
to top)
“Metal-Organic-Framework-Supported and -Isolated Ceria Clusters with Mixed Oxidation States,” Liu, J.; Redfern, L. R.; Liao, Y.; Islamoglu, T.; Atilgan, A.; Farha, O. K.; Hupp, J. T. ACS Appl. Mater. Interfaces, 2019, 21, 51, 47822-47829. DOI: 10.1021/acsami.9b12261
“Vapor-Phase Fabrication and Condensed-Phase Application of a MOF-Node-Supported Iron-Thiolate Photocatalyst for Nitrate Conversion to Ammonium,” Choi, H.; Peters, A. W.; Noh, H.; Gallington, L. C.; Platero-Prats, A. E.; Destefano, M. R.; Rimoldi, M.; Goswami, S.; Chapman, K. W.; Farha, O. K.; Hupp, J. T. ACS Appl. Energy Mater., 2019, 2, 12, 8695-8700. DOI: 10.1021/acsaem.9b01664
“Anisotropic Redox Conductivity within a Metal-Organic Framework Material,” Goswami, S.; Hod, I.; Duan, J.; Kung, C-W.; Rimoldi, M.; Malliakas, C. D.; Palmer, R. H.; Farha, O. K.; Hupp, J. T. J. Am. Chem. Soc., 2019, 141, 44, 17696-17702. DOI: 10.1021/jacs.9b07658
“Identification Schemes for Metal-Organic Frameworks to Enable Rapid Search and Cheminformatics Analysis,” Bucior, B. J.; Rosen, A. S.; Haranczyk, M.; Yao, z.; Ziebel, M. E.; Farha, O. K.; Hupp, H. T.; Siepmann, J. I.; Aspuru-Guzik, A.; Snurr, R. Q. Crystal Growth & Deisgn, 2019, 19, 11, 6682-6697. DOI: 10.1021/acs.cgd.9b01050
“Selective Methane Oxidation to Methanol on Cu-oxo Dimers Stabilized by Zirconia Nodes of NU-1000 Metal-Organic Framework,” Zheng, J.; Ye, J.; Ortuño, Fulton, J. L.; Gutiérrez, O. Y.; Camaioni, D. M.; Motkuri, R. K.; Li, Z.; Webber, T. E.; Mehdi, B. L.; Browning, N. D.; Penn, R. L.; Farha, O. K.; Hupp, J. T.; Truhlar, D.; Cramer, C. J.; Lercher, J. A. J. Am. Chem. Soc., 2019, 141 (43), 9292-9304. DOI: 10.1021/jacs.9b02902
“Enhanced Activity of Heterogeneous Pd(II) Catalysts on Acid Functionalized Metal–Organic Frameworks,” Otake, K.; Ye, J.; Mandal, M.; Islamoglu, T.; Buru, C. T.; Hupp, J. T.; Delferro, M.; Truhlar, D.; Cramer, C. J.; Farha, O. K. ACS Catal., 2019, 9, 5383-5390. DOI: 10.1021/acscatal.9b01043
“Introducing Nonstructural Ligands to Zirconia-like Metal–Organic Framework Nodes To Tune the Activity of Node-Supported Nickel Catalysts for Ethylene Hydrogenation,” Liu, J.; Li, Z.; Zhang, X.; Otake, K.; Zhang, L.; Peters, A. W.; Young, M. J.; Bedford, N. M.; Letourneau, S. P.; Mandia, D. J.; Elam, J. W.; Farha, O. K.; Hupp, J. T., ACS Catal., 2019, 9, 3198-3207. DOI: 10.1021/acscatal.8b04828
“Pore-Templated Growth of Catalytically Active Gold Nanoparticles with a Metal–Organic Framework,” Goswami, S.; Noh, H.; Redfern, L. R.; Otake, K.; Kung, C.-W.; Cui, Y.; Chapman, K. W.; Farha, O. K.; and Hupp, J. T., Chem. Mater. 2019, 31 (5), 1485-1490. DOI: 10.1021/acs.chemmater.8b04983
“Molybdenum Sulfide within a Metal–Organic Framework for Photocatalytic Hydrogen Evolution from Water,” Noh, H.; Yang, Y.; Ahn, S.; Peters, A. W.; Farha, O. K.; Hupp, J. T., J. Electrochem. Soc. 2019, 166 (5), H3154-H3158. DOI: 10.1149/2.0261905jes
“Metal–Organic Framework Supported Single Site Chromium(III) Catalyst for Ethylene Oligomerization at Low Pressure and Temperature,” Goetjen, T. A.; Zhang, X.; Liu, J.; Hupp, J. T.; Farha,, ACS Sustainable Chem. Eng., 2019, 7 (2), 2553-2557. DOI: 10.1021/acssuschemeng.8b05524
to top)
“Nickel–Carbon–Zirconium Material Derived from Nickel-Oxide Clusters Installed in a Metal–Organic Framework Scaffold by Atomic Layer Deposition,” Palmer, R. H.; Kung, C. W.; Liu, J.; Farha, O. K.; Hupp, J. T., Langmuir 2018, 34 (47), 14143–14150. DOI: 10.1021/acs.langmuir.8b02166
“Phosphonates Meet Metal−Organic Frameworks: Towards CO2 Adsorption,” da Silva, C. T. P.; Howarth, A. J.; Rimoldi, M.; Islamoglu, T.; Rinaldi, A. W.; Hupp, J. T., Isr. J. Chem. 2018, 58 (9-10), 1164-1170. DOI: 10.1002/ijch.201800129
“Atomic layer deposition of Pt@CsH2PO4 for the cathodes of solid acid fuel cells,” Lim, D.-K.; Liu, J.; Pandey, S. A.; Paik, H.; Chisholm, C. R. I.; Hupp, J. T.; Haile, S. M., Electrochim. Acta 2018, 288, 12-19. DOI: 10.1016/j.electacta.2018.07.076
“Boosting Transport Distances for Molecular Excitons within Photoexcited Metal–Organic Framework Films,” Goswami, S.; Chen, M.; Wasielewski, M. R.; Farha, O. K.; Hupp, J. T., ACS Appl Mater Interfaces 2018, 10 (40), 34409-34417. DOI: 10.1021/acsami.8b14977
“Redox-Mediator-Assisted Electrocatalytic Hydrogen Evolution from Water by a Molybdenum Sulfide-Functionalized Metal–Organic Framework,” Noh, H.; Kung, C.-W.; Otake, K.-i.; Peters, A. W.; Li, Z.; Liao, Y.; Gong, X.; Farha, O. K.; Hupp, J. T., ACS Catal. 2018, 8 (10), 9848-9858. DOI: 10.1021/acscatal.8b02921
“Beyond the Active Site: Tuning the Activity and Selectivity of a Metal–Organic Framework-Supported Ni Catalyst for Ethylene Dimerization,” Liu, J.; Ye, J.; Li, Z.; Otake, K. I.; Liao, Y.; Peters, A. W.; Noh, H.; Truhlar, D. G.; Gagliardi, L.; Cramer, C. J.; Farha, O. K.; Hupp, J. T., J. Am. Chem. Soc. 2018, 140 (36), 11174-11178. DOI: 10.1021/jacs.8b06006
“Inorganic “Conductive Glass” Approach to Rendering Mesoporous Metal–Organic Frameworks Electronically Conductive and Chemically Responsive,” Kung, C. W.; Platero-Prats, A. E.; Drout, R. J.; Kang, J.; Wang, T. C.; Audu, C. O.; Hersam, M. C.; Chapman, K. W.; Farha, O. K.; Hupp, J. T., ACS Appl Mater Interfaces 2018, 10 (36), 30532-30540. DOI: 10.1021/acsami.8b08270
“Pushing the Limits on Metal-Organic Frameworks as a Catalyst Support: NU-1000 Supported Tungsten Catalysts for o-Xylene Isomerization and Disproportionation.” Ahn, S.; Nauert, S. L.; Buru, C. T.; Rimoldi, M.; Choi, H.; Schweitzer, N. M.; Hupp, J. T.; Farha, O. K.; Notestein, J. M., J. Am. Chem. Soc. 2018, 140 (27), 8535-8543. DOI: 10.1021/jacs.8b04059
“Single-Atom-Based Vanadium Oxide Catalysts Supported on Metal-Organic Frameworks: Selective Alcohol Oxidation and Structure-Activity Relationship.” Otake, K. I.; Cui, Y.; Buru, C. T.; Li, Z.; Hupp, J. T.; Farha, O. K., J. Am. Chem. Soc. 2018, 140 (28), 8652-8656. DOI: 10.1021/jacs.8b05107
“Toward a Charged Homo[2]catenane Employing Diazaperopyrenium Homophilic Recognition.” Gong, X.; Zhou, J.; Hartlieb, K. J.; Miller, C.; Li, P.; Farha, O. K.; Hupp, J. T.; Young, R. M.; Wasielewski, M. R.; Stoddart, J. F., J. Am. Chem. Soc. 2018, 140 (21), 6540-6544. DOI: 10.1021/jacs.8b03407
“Theoretical insights into direct methane to methanol conversion over supported dicopper oxo nanoclusters.” Doan, H. A.; Li, Z.; Farha, O. K.; Hupp, J. T.; Snurr, R. Q., Catalysis Today 2018, 312, 2-9. DOI: 10.1016/j.cattod.2018.03.063
“Stabilizing a Vanadium Oxide Catalyst by Supporting on a Metal–Organic Framework.” Cui, Y.; Rimoldi, M.; Platero-Prats, A. E.; Chapman, K. W.; Hupp, J. T.; Farha, O. K., ChemCatChem 2018, 10 (8), 1772-1777. DOI: 10.1002/cctc.201701658
“Electroactive Ferrocene at or near the Surface of Metal–Organic Framework UiO-66.” Palmer, R. H.; Liu, J.; Kung, C. W.; Hod, I.; Farha, O. K.; Hupp, J. T., Langmuir 2018, 34 (16), 4707-4714. DOI: 10.1021/acs.langmuir.7b03846
“Highly Active NiO Photocathodes for H2O2 Production Enabled via Outer-Sphere Electron Transfer.” Jung, O.; Pegis, M. L.; Wang, Z.; Banerjee, G.; Nemes, C. T.; Hoffeditz, W. L.; Hupp, J. T.; Schmuttenmaer, C. A.; Brudvig, G. W.; Mayer, J. M., J. Am. Chem. Soc. 2018, 140 (11), 4079-4084. DOI: 10.1021/jacs.8b00015
“Application and Limitations of Nanocasting in Metal–Organic Frameworks.” Malonzo, C. D.; Wang, Z.; Duan, J.; Zhao, W.; Webber, T. E.; Li, Z.; Kim, I. S.; Kumar, A.; Bhan, A.; Platero-Prats, A. E.; Chapman, K. W.; Farha, O. K.; Hupp, J. T.; Martinson, A. B. F.; Penn, R. L.; Stein, A., Inorg. Chem. 2018, 57 (5), 2782-2790. DOI: 10.1021/acs.inorgchem.7b03181
“Room Temperature Synthesis of an 8-Connected Zr-Based Metal–Organic Framework for Top-Down Nanoparticle Encapsulation.” Noh, H.; Kung, C.-W.; Islamoglu, T.; Peters, A. W.; Liao, Y.; Li, P.; Garibay, S. J.; Zhang, X.; DeStefano, M. R.; Hupp, J. T.; Farha, O. K., Chem. Mater. 2018, 30 (7), 2193-2197. DOI: 10.1021/acs.chemmater.8b00449
“Bifunctional Porphyrin-Based Nano-Metal–Organic Frameworks: Catalytic and Chemosensing Studies.” Pereira, C. F.; Figueira, F.; Mendes, R. F.; Rocha, J.; Hupp, J. T.; Farha, O. K.; Simoes, M. M. Q.; Tome, J. P. C.; Paz, F. A. A., Inorg. Chem. 2018, 57 (7), 3855-3864. DOI: 10.1021/acs.inorgchem.7b03214
“Extending the Compositional Range of Nanocasting in the Oxozirconium Cluster-Based Metal–Organic Framework NU-1000—A Comparative Structural Analysis.” Zhao, W.; Wang, Z.; Malonzo, C. D.; Webber, T. E.; Platero-Prats, A. E.; Sotomayor, F.; Vermeulen, N. A.; Wang, T. C.; Hupp, J. T.; Farha, O. K.; Penn, R. L.; Chapman, K. W.; Thommes, M.; Stein, A., Chem. Mater. 2018, 30 (4), 1301-1315. DOI: 10.1021/acs.chemmater.7b04893
“Site-Directed Synthesis of Cobalt Oxide Clusters in a Metal–Organic Framework.” Peters, A. W.; Otake, K.; Platero-Prats, A. E.; Li, Z.; DeStefano, M. R.; Chapman, K. W.; Farha, O. K.; Hupp, J. T., ACS Appl Mater Interfaces 2018, 10 (17), 15073-15078. DOI: 10.1021/acsami.8b02825
“Metal–Organic Frameworks as Platform Materials for Solar Fuels Catalysis.” Majewski, M. B.; Peters, A. W.; Wasielewski, M. R.; Hupp, J. T.; Farha, O. K., ACS Energy Lett. 2018, 3 (3), 598-611. DOI: 10.1021/acsenergylett.8b00010
“Benchmark Study of Hydrogen Storage in Metal–Organic Frameworks under Temperature and Pressure Swing Conditions.” García-Holley, P.; Schweitzer, B.; Islamoglu, T.; Liu, Y.; Lin, L.; Rodriguez, S.; Weston, M. H.; Hupp, J. T.; Gómez-Gualdrón, D. A.; Yildirim, T.; Farha, O. K., ACS Energy Lett. 2018, 3 (3), 748-754. DOI: 10.1021/acsenergylett.8b00154
“Tunable Crystallinity and Charge Transfer in Two‐Dimensional G‐Quadruplex Organic Frameworks.” Wu, Y. L.; Bobbitt, N. S.; Logsdon, J. L.; Powers-Riggs, N. E.; Nelson, J. N.; Liu, X.; Wang, T. C.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K.; Hersam, M. C.; Wasielewski, M. R., Angew. Chem. Int. Ed. 2018, 57 (15), 3985-3989. DOI: 10.1002/anie.201800230
“Sinter‐Resistant Platinum Catalyst Supported by Metal–Organic Framework.” Kim, I. S.; Li, Z.; Zheng, J.; Platero-Prats, A. E.; Mavrandonakis, A.; Pellizzeri, S.; Ferrandon, M.; Vjunov, A.; Gallington, L. C.; Webber, T. E.; Vermeulen, N. A.; Penn, R. L.; Getman, R. B.; Cramer, C. J.; Chapman, K. W.; Camaioni, D. M.; Fulton, J. L.; Lercher, J. A.; Farha, O. K.; Hupp, J. T.; Martinson, A. B. F., Angew. Chem. Int. Ed. 2018, 57 (4), 909-913. DOI: 10.1002/anie.201708092
“A porous, electrically conductive hexa-zirconium(IV) metal–organic framework.” Goswami, S.; Ray, D.; Otake, K. I.; Kung, C. W.; Garibay, S. J.; Islamoglu, T.; Atilgan, A.; Cui, Y.; Cramer, C. J.; Farha, O. K.; Hupp, J. T., Chem Sci 2018, 9 (19), 4477-4482. DOI: 10.1039/C8SC00961A
“Increased Electrical Conductivity in a Mesoporous Metal–Organic Framework Featuring Metallacarboranes Guests.” Kung, C. W.; Otake, K.; Buru, C. T.; Goswami, S.; Cui, Y.; Hupp, J. T.; Spokoyny, A. M.; Farha, O. K., J. Am. Chem. Soc. 2018, 140 (11), 3871-3875. DOI: 10.1021/jacs.8b00605