个人简介
Li Jiangkuan, male, Ph.D. in Engineering. The main research directions are the application of artificial intelligence in the nuclear field (fault diagnosis, parameter prediction, and solving complex partial differential equations of neutron physics and thermal fluids in the core), program development and system simulation of reactor thermal hydraulic systems.
教育经历
2013.09-2017.06 Bachelor's degree in Nuclear Engineering and Nuclear Technology, Harbin Engineering University
2017.09-2020.03 Master's degree in Nuclear Science and Engineering, Shanghai Jiao Tong University (Supervisor: Meng Lin)
2020.09-2023.09 PhD in Nuclear Science and Technology, Shanghai Jiao Tong University (Supervisor: Meng Lin)
工作经历
2013.10-Present, Lecturer at the School of Nuclear Science and Technology, Harbin Engineering University
研究领域
人工智能在核领域中的应用(故障诊断、参数预测和堆芯中子物理及热工流体复杂偏微分方程求解等)
反应堆热工水力系统程序开发
系统仿真等
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
1. Lin M, Li J, Li Y, et al. Generalization analysis and improvement of CNN-based nuclear power plant fault diagnosis model under varying power levels[J]. Energy, 2023, 282: 128905.
2. Li J, Lin M, Li Y, et al. Transfer learning network for nuclear power plant fault diagnosis with unlabeled data under varying operating conditions[J]. Energy, 2022, 254: 124358.
3. Li J, Lin M, Li Y, et al. Transfer learning with limited labeled data for fault diagnosis in nuclear power plants[J]. Nuclear Engineering and Design, 2022, 390: 111690.
4. Li J, Lin M. Research on robustness of five typical data-driven fault diagnosis models for nuclear power plants[J]. Annals of Nuclear Energy, 2022, 165: 108639.
5. Li J, Lin M. Ensemble learning with diversified base models for fault diagnosis in nuclear power plants[J]. Annals of Nuclear Energy, 2021, 158: 108265.
6. Li J, Lin M. Research on generalization of typical data-driven fault diagnosis methods for nuclear power plants[C]// The 29th International Conference on Nuclear Engineering, Shenzhen, August 8-12, 2022. New York: ASME, 2022: 88934.
7. Li J, Lin M. Robustness analysis and improvement of fault diagnosis model for nuclear power plants based on random forest[C]// The 28th International Conference on Nuclear Engineering, virtual online, August 4-6, 2021. New York: ASME, 2021: 64109.
8. 李江宽,黄涛,林萌等. 热工水力系统分析程序Courant条件计算方法研究[J]. 核动力工程,2021,42(04):63-67.
9. 李江宽,景兴天,林萌等. 反应堆热工水力系统分析程序时间步长控制方案研究[J]. 核动力工程,2021,42(S1):63-69.
10. 李江宽,杨里平,林萌等. 用于控制系统现场调试的核电汽轮机仿真模型研究[J]. 核科学与工程,2021,41(06):1175-1182.