个人简介
明静思,华东师范大学统计学院和统计交叉科学研究院助理教授。2018年博士毕业于香港浸会大学,2018-2020年在香港科技大学从事博士后研究工作,2020年9月加入华东师范大学。主要研究方向包括统计遗传学,生物信息学,统计机器学习等,研究成果发表于Briefings in Bioinformatics, Bioinformatics, Nature Computational Science, Journal of Computational and Graphical Statistics等期刊,入选上海市扬帆计划,主持一项国家自然科学基金青年基金项目。
教育经历
2015-2018 香港浸会大学 博士
2013-2015 复旦大学 硕士
2009-2013 复旦大学 本科
工作经历
2020.9- 华东师范大学 助理教授
2018.12-2020.8 香港科技大学 博士后
2018.9-2018.11 香港科技大学 研究助理
荣誉及奖励
第三十二期新入职教师教学比赛三等奖
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
The Tabula Microcebus Consortium, Camille Ezran#, Shixuan Liu#, Jingsi Ming, Lisbeth A. Guethlein, Michael F.Z. Wang, Roozbeh Dehghannasiri, Julia Olivieri, Hannah K. Frank, Alexander Tarashansky, Winston Koh, Qiuyu Jing, Olga Botvinnik, Jane Antony, Stephen Chang, Angela Oliverira Pisco, Jim Karkanias, Can Yang, James E. Ferrell Jr., Scott D. Boyd, Peter Parham, Jonathan Z. Long, Bo Wang, Julia Salzman, Iwijn De Vlaminck, Angela Wu, Stephen R. Quake*, Mark A. Krasnow* (2022+). Mouse lemur transcriptomic atlas elucidates primate genes, physiology, disease, and evolution.
The Tabula Microcebus Consortium, Camille Ezran#, Shixuan Liu#, Stephen Chang#, Jingsi Ming, Olga Botvinnik, Lolita Penland, Alexander Tarashansky, Antoine de Morree, Kyle J. Travaglini, Kazuteru Hasegawa, Hosu Sin, Rene Sit, Jennifer Okamoto, Rahul Sinha, Yue Zhang, Caitlin J. Karanewsky, Jozeph L. Pendleton, Maurizio Morri, Martine Perret, Fabienne Aujard, Lubert Stryer, Steven Artandi, Margaret Fuller, Irving L. Weissman, Thomas A. Rando, James E. Ferrell Jr., Bo Wang, Iwijn De Vlaminck, Can Yang, Kerriann M. Casey, Megan A. Albertelli, Angela Oliveira Pisco, Jim Karkanias, Norma Neff, Angela Wu, Stephen R. Quake*, Mark A. Krasnow* (2022+). Tabula Microcebus: A transcriptomic cell atlas of mouse lemur, an emerging primate model organism.
Shuang Dai, Jingsi Ming*, Zhou Yu (2023+). A distributed minimum average variance estimation for sufficient dimension reduction. Statistics and Its Interface. Accepted.
Jia Zhao#, Gefei Wang#, Jingsi Ming, Zhixiang Lin, Yang Wang, The Tabula Microcebus Consortium, Angela Ruohao Wu*, Can Yang* (2022). Adversarial domain translation networks for integrating large-scale atlas-level single-cell datasets. Nature Computational Science, 2(5):317-330.
Jingsi Ming#, Zhixiang Lin#, Jia Zhao, Xiang Wan, The Tabula Microcebus Consortium, Can Yang*, Angela Ruohao Wu* (2022). FIRM: Flexible Integration of single-cell RNA-sequencing for large-scale Multi-tissue cell atlas datasets. Briefings in Bioinformatics, 23(5):bbac167.
Jingsi Ming, Jia Zhao, Can Yang* (2022). scPI: A scalable framework for probabilistic inference in single-cell RNA-sequencing data analysis. Statistics in Biosciences, 1-24.
Julia Eve Olivieri, Roozbeh Dehghannasiri, Peter L Wang, SoRi Jang, Antoine de Morree, Serena Y Tan, Jingsi Ming, Angela Ruohao Wu, Tabula Sapiens Consortium, Stephen R Quake, Mark A Krasnow, Julia Salzman* (2021). RNA splicing programs define tissue compartments and cell types at single cell resolution. eLife, 10:e70692.
Jingsi Ming, Tao Wang and Can Yang* (2020). LPM: a latent probit model to characterize the relationship among complex traits using summary statistics from multiple GWASs and functional annotations. Bioinformatics, 36(8): 2506-2514.
Jia Zhao, Jingsi Ming, Xianghong Hu, Gang Chen, Jin Liu, Can Yang* (2020). Bayesian weighted Mendelian randomization for causal inference based on summary statistics, Bioinformatics, 36(5): 1501-1508.
Mingxuan Cai, Mingwei Dai, Jingsi Ming, Heng Peng, Jin Liu, Can Yang* (2020). BIVAS: a scalable Bayesian method for bi-level variable selection with applications. Journal of Computational and Graphical Statistics, 29(1), 40-52.
Jingsi Ming, Mingwei Dai, Mingxuan Cai, Xiang Wan, Jin Liu*, Can Yang* (2018). LSMM: a statistical approach to integrating functional annotations with genome-wide association studies, Bioinformatics, 34(16): 2788-2796.
Mingwei Dai, Jingsi Ming, Mingxuan Cai, Jin Liu, Can Yang*, Xiang Wan*, Zongben Xu* (2017). IGESS: a statistical approach to integrating individual-level genotype data and summary statistics in genome-wide association studies, Bioinformatics, 33(18): 2882-2889.