当前位置: X-MOL首页全球导师 国内导师 › 李俊

个人简介

本科毕业于复旦大学数学与应用数学专业,博士毕业于俄勒冈州立大学计算机专业。致力于人工智能和机器学习的基础研究,主要包括“第三代神经网络”脉冲神经网络的算法、建模和理论,以及深度神经网络的优化和泛化性理论研究。多次在国际人工智能/深度学习的顶级会议(ICLR,CVPR,ICCV,AAAI等)发表论文以及进行主题报告。

研究领域

脉冲神经网络,深度学习理论

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Ruizhe Zheng*, Jun Li*, Yi Wang, Tian Luo, Yuguo Yu. ScatterFormer: Locally-Invariant Scattering Transformer for Patient-Independent Multispectral Detection of Epileptiform Discharges, (AAAI Oral) 2023. (IF=25.57) (共同一作) Tan Yu, Jun Li, Yunfeng Cai, Ping Li. Constructing Orthogonal Convolutions in an Explicit Manner, (ICLR) 2022. (IF=20.03) Jianwen Xie, Yaxuan Zhu, Jun Li, Ping Li. A Tale of Two Flows: Cooperative Learning of Langevin Flow and Normalizing Flow Toward Energy-Based Model, (ICLR) 2022. (IF=20.03) Jun Li, Sinisa Todorovic. Action Shuffle Alternating Learning for Unsupervised Action Segmentation, (CVPR) 2021. (IF=45.17) Jun Li, Sinisa Todorovic. Anchor-Constrained Viterbi for Set-Supervised Action Segmentation, (CVPR) 2021. (IF= 45.17) Jun Li, Sinisa Todorovic. Set-Constrained Viterbi for Set-Supervised Action Segmentation, (CVPR) 2020. (IF= 45.17) Jun Li, Fuxin Li, Sinisa Todorovic. Efficient Riemannian Optimization on the Stiefel Manifold via the Cayley Transform, (ICLR) 2020. (IF=20.03) Jun Li, Peng Lei, Sinisa Todorovic. Weakly Supervised Energy-Based Learning for Action Segmentation, (ICCV Oral) 2019. (IF=21.94)

推荐链接
down
wechat
bug