当前位置: X-MOL首页全球导师 国内导师 › 程新宇

个人简介

程新宇博士2015年于香港中文大学数学系获得甲等学士学位。2017年及2021年分别获得加拿大不列颠哥伦比亚大学的硕士及博士学位。2021年至2023年在复旦大学数学科学学院开展博士后研究。曾获得博士后国际交流计划引进项目、上海市“超级博士后”激励计划,主持中国博士后科学基金面上项目一项、中国博士后科学基金特别资助 (站中)一项。2023年12月至今在复旦大学智能复杂体系基础理论与关键技术实验室担任青年研究员。致力于复杂系统中的时空动力学方程的理论、建模及交叉应用研究。已在相关领域的顶级或一流期刊Communications in Mathematical Physics、SIAM Journal on Applied Mathematics、Journal of Scientific Computing、Journal of Statistical Physics等上发表学术论文7篇。 教育经历 2017-2021不列颠哥伦比亚大学 数学 博士 2015-2017 不列颠哥伦比亚大学 数学 硕士 2011-2015香港中文大学 数学 学士

研究领域

非线性动力学方程;偏微分方程;数值分析

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

published On the Spectral Gap of a Square Distance Matrix, joint with D. Li, D. Shirokoff and B. Wetton, J. Stat. Phys., 2017, 166(3-4), 1029–1035. pdf Asymptotic Behaviour of Time Stepping Methods for Phase Field Models, joint with D. Li, K. Promislow and B. Wetton, J. Sci. Comput., 2021, 86(3), 1–34. pdf On a parabolic Sine-Gordon model, joint with D. Li, C. Quan and W. Yang, Numerical Mathematics: Theory, Methods and Applications., 2021, 14(4), 1068–1084.pdf Non-uniqueness of stationary weak solutions to the surface quasi-geostrophic equations, joint with H. Kwon and D. Li, Comm. Math. Phys., 2021, 388 (3), 1281-1295.pdf Global wellposedness for 2D quasilinear wave without Lorentz, joint with D. Li, J. Xu and D. Zha, Dynam. Part. Differ. Eq., 2022, 19(2) , 123-140. pdf On the equivalence of classical Helmholtz equation and fractional Helmholtz equation with arbitrary order, joint with D. Li and W. Yang , to appear in Comm. Contemp. Math.pdf Equivalent formulations of the oxygen diffusion problem and other implicit free boundary value problems and implications for numerical approximation, joint with Z. Fu and B. Wetton, SIAM J. Appl. Math., 2023, 83(1), 52-78.pdf On the global well-posedness and scattering of the 3D Klein-Gordon-Zakharov system, joint with J. Xu, Calc. Var. Part. Differ. Eqn., 63(17), 2024. pdf Localization for general Helmholtz, joint with D. Li and W. Yang, J. Diff. Eqn., 393: 139-154, 2024. pdf preprints Unconditionally stable exponential integrator schemes for the 2D Cahn-Hilliard equation, ArXiv:2312.15656. Energy stable semi-implicit schemes for the 2D Allen-Cahn and fractional Cahn-Hilliard equations, [preprint]. Energy stable semi-implicit schemes for the 3D Allen-Cahn equation, [preprint]. Second order energy stable semi-implicit schemes for the 2D Allen-Cahn equation, [preprint]. On a Sinc-type MBE model, joint with D. Li, C. Quan and W. Yang, submitted. ArXiv:2106.16193. Uniform Boundedness of Highest Norm for 2D Quasilinear Wave, joint with D. Li and J. Xu, submitted. ArXiv:2104.10019. Energy stability and convergence of Strang splitting method for Cahn-Hilliard equation, joint with D. Li, preprint. Global well-posedness for 2D quasilinear wave equations with non-compactly supported initial data, joint with D. Li and J. Xu, preprint. Global well-posedness of a two dimensional wave-Klein-Gordon system with small non-compactly supported data, ArXiv:2312.00821.

推荐链接
down
wechat
bug