近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
F. N. Hao, C. Yang, X. M. Lv, F. Wen, S. Y. Wang*, G. F. Zheng*, Q. Han*, Photo-Driven Quasi-Topological Transformation Exposing Highly Active Nitrogen Cation Sites for Enhanced Photocatalytic H2O2 Production. Angew. Chem. Int. Ed., 2023, in revison.
C. B. Wu, Z. Y. Teng, C. Yang, B. Liu, G. F. Zheng, Q. Han*, Polarization Engineering of Covalent Triazine Frameworks for Highly Efficient Photosynthesis of Hydrogen Peroxide from Molecular Oxygen and Water. Adv. Mater., 2022, 34, e2110266.
H. Z. Wang, C. Yang, F. S. Chen, G. F. Zheng, Q. Han*. A Crystalline Half-Fluorinated Triazine Covalent Organic Framework for Efficient Photosythesis of Hydrogen Peroxide. Angew. Chem. Int. Ed., 2022, 61, e202200413.
S. Yan, C. Peng, C. Yang, Y. S. Chen, Q. Han*, G. F. Zheng*, Electron Localization and Lattice Strain Induced by Surface Lithium Doping Enable Ampere-Level Electrosynthesis of Formate from CO2. Angew. Chem. Int. Ed., 2021, 60, 25741–25745.
C. Peng, G. Luo, Z. K. Xu, S. Yan, J. B. Zhang, M. H. Chen, L. P. Qian, W. Wei*, Q. Han*, G. F. Zheng*. Lithiation-enabled High-density Nitrogen Vacancies Efficiently Electrocatalyzed CO2 to C2 Products. Adv. Mater., 2021, 33, 2103150.
S. Yan, C. Peng, C. Yang, Y. S. Chen, Q. Han*, G. F. Zheng*, Electron Localization and Lattice Strain Induced by Surface Lithium Doping Enable Ampere-Level Electrosynthesis of Formate from CO2. Angew. Chem. Int. Ed., 2021, 60, 25741–25745.
C. Peng, G. Luo, Z. K. Xu, S. Yan, J. B. Zhang, M. H. Chen, L. P. Qian, W. Wei*, Q. Han*, G. F. Zheng*. Lithiation-enabled High-density Nitrogen Vacancies Efficiently Electrocatalyzed CO2 to C2 Products. Adv. Mater., 2021, 33, 2103150.
Q. Han*, C. B. Wu, H. M. Jiao, R. Y. Xu, Y. Z. Wang, J. J. Xie, J. W. Tang*, Rational Design of High-Concentration Ti3+ in Porous Carbon-Doped TiO2 Nanosheets for Efficient Photocatalytic Ammonia Synthesis. Adv. Mater., 2021, 33, 2008180.
Q. Han, B. Wang, J. Gao, L. T. Qu*. Graphitic Carbon Nitride/Nitrogen-Rich Carbon Nanofibers: Highly Efficient Photocatalytic Hydrogen Evolution without Cocatalysts. Angew. Chem. Int. Ed., 2016, 55, 10849–10853.
Q. Han, B. Wang, Y. Zhao, L. T. Qu*.A Graphitic-C3N4 “Seaweed” Architecture for Enhanced Hydrogen Evolution. Angew. Chem. Int. Ed., 2015, 54, 11433–11437.
Q. Han*, Z. H. Cheng, L. T. Qu*. Significant Enhancement of Visible-Light-Driven Hydrogen Evolution by Structure Regulation of Carbon Nitrides. ACS Nano, 2018, 12, 5221–5227.
B. Lu, X. T. Jin, Q. Han*, L. T. Qu*, Planar Graphene-based Micro-supercapacitors. Small, 2021, 2006827.
C. B. Wu, G. H. Yu, Y. Yin, Z. Y. Wang, L. Chen, Q. Han*, J. W. Tang, B. Wang*. Mesoporous Polymeric Cynanmide-Triazole-Heptazine Photocatalysts for Highly-Efficient Water Splitting. Small, 2020, 2003162.
Y. Liang, F. Liu, Y. Deng, Q. H. Zhou, Z. H. Cheng, Q. Han*, H. B. Shao*, L. T. Qu*. A Cut-Resistant and Highly Restorable Graphene Foam.Small,2018, 1801916.
T. Xu,Q. Han*, Z. H. Cheng, J. Zhang, L. T. Qu*.Interactions between Graphene-Based Materials and Water Molecules toward Actuator and Electricity-Generator Applications. Small Methods,2018, 1800108.
L. W. Chen, X. T. Ding, J. F. Zeng, C. B. Wu, Q. Han*, L. T. Qu. A Three-Dimensional Hollow Graphene Fiber Microelectrode with Shrink-Effect-Enabled Enzyme Immobilization for Sensor Applications. Sci. Bull., 2019, 54, 718–722.
F. S. Chen, C. B. Wu, G. F. Zheng*, L. T. Qu*, Q. Han*. Few-Layer Carbon Nitride Photocatalysts for Solar Fuels and Chemicals: Current status and Prospects. Chinese J. Catal., 2022, 43, 1216.
X. Di, X. M. Lv, H. Z. Wang, F. S. Chen, S. Y. Wang, G. F. Zheng, B. Wang*, Q. Han*. Enhanced Pre-Sensitization in Metal-Free Covalent Organic Frameworks Promoting Hydrogen Peroxide Photosynthesis.Chem. Eng. J., 2023, 10.1016/j.cej.2022.140124.
P. P. Gao, C. B. Wu, S. Y. Wang, G. F. Zheng*, Q. Han*. Efficient Photosynthesis of Hydrogen Peroxide by Triazole-Modified Covalent Triazine Framework Nanosheets. J. Colloid Interf. Sci., 2023, 10.1016/j.jcis.2023.06.186.
Y. K., Sheng, F. Guo, B. C. Guo, N. Wang, Y. Y. Sun, H. Liu, X. D. Feng*, Q. Han*, Y. Yu*, C. Li, Light-driven CO2 reduction with surface-displayed enzyme cascade-C3N4 hybrid.ACS Synth. Biol., 2023, doi: 10.1021/acssynbio.3c00273.
Q. Wang, M. Kan, Q. Han*, G. F. Zheng*. Electrochemcial Methane Conversion. Small Struct., 2021, 2100037.
Y. Yin, C. B. Wu, G. Yu, H. Z. Wang, Q. Han*, L. T. Qu. A Hierarchical Heterojunction Polymer Aerogel for Accelerating Charge Transfer and Separation. J. Mater. Chem. A, 2021, 9, 7881–7887.
L. Chen, Y. Z. Wang, C. B. Wu, G. H. Yu, C. L. Su, J. J. Xie, Q. Han*, L. T. Qu, Synergistic Oxygen Substitution and Heterostructure Construction in Polymeric Semiconductors for Efficient Water Splitting. Nanoscale, 2020, 12, 13484–13490.
Y. Z. Wang, R. Y. Xu, C. D. Windle, Q. Han*, L. T. Qu, Hierarchical ZnO@Hybrid CarbonCore-Shell Nanowire Array on a Graphene Fiber Microelectrode for UltrasensitiveDetection of 2,4,6-Trinitrotoluene. ACS Appl. Mater. Interfaces, 2020, 12, 8547–8554.
J. X. Bai, B. Lu, Q. Han*, Q. S. Li,* L. T. Qu*. (111) Facets-Oriented Au-Decorated Carbon Nitride Nanoplatelets for Visible-Light-Driven Overall Water Splitting. ACS Appl. Mater. Interfaces, 2018, 38066–38072.
Q. Han, Z. H. Cheng, L. M. Dai, L. T. Qu*. Mesh-on-mesh Graphitic-C3N4@Graphene for Highly Efficient Hydrogen Evolution. Adv. Funct. Mater., 2017, 27, 1606352.
Q. Han*, N. Chen, J. Zhang, L. T. Qu*. Graphene/Graphitic Carbon Nitride Hybrids for Catalysis. Mater. Horiz., 2017, 4, 832–850.
Q. Han, B. Wang, L. T. Qu*. Atomically Thin Mesoporous Nanomesh of Graphitic-C3N4 for High-Efficiency Photocatalytic Hydrogen Evolution. ACS Nano, 2016, 10, 2745–2751.
Z. L. Xie, M. H. Chen, Y. S. Chen, Q. Han*, G. F. Zheng*. Electrocatalytic Methane Oxidation to Ethanol via Rh/ZnO Nanosheets. J. Phys. Chem. C, 2021, 125, 13324–13330.
L. Chen, Y. Z. Wang, C. B. Wu, G. H. Yu, C. L. Su, J. J. Xie, Q. Han*, L. T. Qu,Synergistic Oxygen Substitution and Heterostructure Construction in Polymeric Semiconductors for Efficient Water Splitting. Nanoscale, 2020, 12, 13484–13490.
C. B. Wu,Q. Han*,L. T. Qu. Functional group defect design in polymeric carbon nitride for photocatalytic application.APL Mater., 2020, 8, 120703.
J. Zeng, R. Y. Xu, L. Jiao, Y. Z. Wang, L. W. Chen, Q. Han*, L. T. Qu. A 3D-Graphene Fiber Electrode Embedded with Nitrogen-Rich-Carbon-Coated ZIF-67 for the Ultrasensitive Detection of Adrenaline.J. Mater. Chem. B, 2019, 7, 5291–5295.
J. Zeng, X. Ding, Q. Han*. Ultra-Small Dispersed CuxO Nanoparticles onGraphene Fibers for Miniaturized ElectrochemicalSensor Applications. RSC Adv., 2019, 9, 28207–28212.
G. H. Yu, Q. Han*, L. T. Qu*. Graphene Fibers: Advancing Applications in Sensor, Energy Storage and Conversion. Chinese J. Polym. Sci., 2019, 37, 535–547.
F. S. Chen, Y. N. Chen*, Q. Han*, L. T. Qu*. One-Step Synthesis of Hierarchical Ni3Se2 Nanosheet-on-Nanorods/Ni Foam Electrodes for Hybrid Supercapacitors. Chinese Chem. Letters, 2022, 33, 475–479.
J. X. Bai,Q. Han*, L. T. Qu*.Wall-Mesoporous Graphitic Carbon Nitride Nanotubes for Efficient Photocatalytic Hydrogen Evolution.Chem. Asian J, 2018,13, 3160.
T. C. Miao, X. Di, F. N. Hao, G. F. Zheng, Q. Han*. Polymeric Carbon Nitride-based Single Atom Photocatalysts for CO2 Reduction to C1 Products. Chem. Res. Chinese Universities, 2022, 38, 1197-1206.
Q. Han, H. M. Jiao, L. Q. Xiong, J. W. Tang*. Progress and Challenges in Photocatalytic Ammonia Synthesis. Mater. Adv., 2021, 2, 564–581.
Q. Han, F. Zhao,C. G. Hu, L. Lv, Z. P. Zhang*, N. Chen, and L. T. Qu*. Facile Production of Ultrathin Graphitic Carbon Nitride Nanoplatelets for Efficient Visible-Light Water Splitting.Nano Res., 2015, 8, 1718–1728.
C. Y. Xu#, Q. Han# (co-first author). Y. Zhao, L. T. Qu*.Sulfur-Doped Graphitic Carbon Nitride Decorated with Graphene Quantum Dots for an Efficient Metal-Free Electrocatalyst. J. Mater. Chem. A, 2015, 3, 1841–1846.
Z. F. Zhang, C. T. Qiu, Y. S. Xu, Q. Han, J. W. Tang, K. P. Loh, C. L. Su*,Semiconductor Photocatalysis to Engineering Deuterated N-alkyl Pharmaceuticals Enabled by Synergistic Activation of Water and Alkanols, Nature Commun.,2020, 11, 4722.
Y. Zhao, Q. Han, Z. Cheng, L. Jiang, L. T. Qu*, Integrated Graphene Systems by Laser Irradiation for Advanced Devices, Nano Today, 2017, 12, 14–30.
C. Y. Xu#, Q. Han# (co-first author). Y. Zhao, L. T. Qu*.Sulfur-Doped Graphitic Carbon Nitride Decorated with Graphene Quantum Dots for an Efficient Metal-Free Electrocatalyst. J. Mater. Chem. A, 2015, 3, 1841–1846.
Z. F. Zhang, C. T. Qiu, Y. S. Xu, Q. Han, J. W. Tang, K. P. Loh, C. L. Su*,Semiconductor Photocatalysis to Engineering Deuterated N-alkyl Pharmaceuticals Enabled by Synergistic Activation of Water and Alkanols, Nature Commun.,2020, 11, 4722.
Y. Zhao, Q. Han, Z. Cheng, L. Jiang, L. T. Qu*, Integrated Graphene Systems by Laser Irradiation for Advanced Devices, Nano Today, 2017, 12, 14–30.
C. X. Li, Z. H. Cheng, J. Gao, Q. Han, M. H. Ye, J. Zhang*, R. D. Huang*, L. T. Qu*. Oxidation Degree of Graphene Reflected by Moorphology-Tailored ZnO Growth. Carbon, 2016, 107, 583–592.
C. X. Li, F. Zhao, Q. Han, C. G. Hu, L. X. Lv, N. Chen, L. T. Qu*. Spontaneous Formation of Cu2O-g-C3N4 Core-Shell Nanowires for Photocurrent and Humidity Responses. Nanoscale, 2015, 7, 9694–9702.
Y. Z. Zheng, Q. Han, M. L. Qi*, L. T. Qu*, Graphitic Carbon Nitride Nanofibers in Seaweed-Like Architecture for Gas Chromatographic Seperations. J. Chromatogr. A, 2017, 1496, 133–140.
J. Y. Qu*, Q. Han, F. Gao, J. S. Qiu. Carbon Foams Produced from Lignin-Phenol-Formaldehyde Resin for Oil/Water Seperation. New Carbon Mater., 2017, 32, 86–91.
C. G. Hu, Q. Han, F. Zhao, Z. Y. Yuan, N. Chen, L. T. Qu*. Graphitic C3N4-Pt Nanohybrids Supported on A Graphene Network for Highly Efficient Methanol Oxidation. Sci. China. Mater., 2015, 58, 21–27.
Y. Liao, J. Qian, G. Xie, Q. Han, W. Q.Dang, Y. S. Wang, L. L. Lv, S. Zhao, L. Luo, W. Zhang, H. Y. Jiang*, J. W. Tang*. 2D-Layered Ti3C2 MXenes for Promoted Synthesis of NH3 on P25 Photocatalysts. Appl. Catal. B: Environ., 2020, 273, 119054.
M. Kan, Q. H. Wang, S. Y. Hao, A. X. Guan, Y. S. Chen, Q. Zhang, Q. Han, G. F. Zheng*. System Engineering Enhances Photoelectrochemcial CO2 Reduction. J. Phys. Chem., 2022, 126, 1689–1700.