当前位置: X-MOL首页全球导师 海外导师 › Abolhasani. Milad

个人简介

Milad Abolhasani is an Associate Professor, an ALCOA Scholar, and a University Faculty Scholar in the Department of Chemical and Biomolecular Engineering at North Carolina State University. He received his B.Sc. (2008) and M.A.Sc. (2010) degrees in Mechanical Engineering from Sharif University of Technology and the University of British Columbia, respectively. He then obtained his Ph.D. degree (2014) from the Department of Mechanical and Industrial Engineering in collaboration with the Departments of Chemistry and Chemical Engineering at the University of Toronto. Before joining NC State University, he was a postdoctoral fellow in the Department of Chemical Engineering at MIT (2014-2016). Dr. Abolhasani leads a diverse research group that studies flow chemistry strategies tailored towards accelerated development and manufacturing of advanced functional materials and molecules using autonomous robotic experimentation. Dr. Abolhasani has received numerous awards, recognitions, and fellowships, including NSF CAREER Award, Machine Learning in Chemical Sciences & Engineering Award from The Camille & Henry Dreyfus Foundation, 2022 AIChE NSEF Young Investigator Award, AIChE 35 Under 35, I &EC Research 2021 Class of Influential Researchers, ACS-PRF Doctoral New Investigator Award, AIChE Futures Scholar, The John C. Chen Young Professional Leadership Scholarship (AIChE), ALCOA Scholar, University Faculty Scholar, GoodNight Early Career Innovator Award, Chancellor's Innovation Fund Award, NSERC Postdoctoral Fellowship, and Emerging Investigator recognition from Nanoscale, Lab on a Chip, Reaction Chemistry & Engineering, and Journal of Flow Chemistry.

研究领域

Autonomous Fluidic Lab for Accelerated Materials and Molecular Discovery The Abolhasani Lab is mainly focused on studies of flow chemistry strategies for accelerating the development and manufacturing of advanced functional materials and molecules using self-driving fluidic labs toward addressing the most pervasive challenge of the modern world: Meeting a rapidly growing global energy demand while preserving the environment. To meet these goals, we study the fundamentals of process intensification and microscale transport phenomena using microreaction engineering concepts and principles of “smart” manufacturing. Current research thrusts in the group include: (i) Smart manufacturing of energy-relevant(nano)materials; (ii) Autonomous catalysis using modular flow reactors for green manufacturing of specialty/fine chemicals; (iii) Data-driven microreaction engineering using closed-loop robotic experimentation.

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Autonomous Reaction Pareto-Front Mapping with a Self-driving Catalysis Laboratory. J. A. Bennett, N. Orouji, M. Khan, S. Sadeghi, J. Rodgers, and M. Abolhasani, Nature Chemical Engineering, 2024, Accepted. Performance Metrics to Unleash the Power of Self-Driving Labs in Chemistry and Materials Science. A. A. Volk and M. Abolhasani, Nature Communications, 2024, 15, 1378. Digital Pareto-Front Mapping of Homogeneous Catalytic Reactions. N. Orouji, J. A. Bennett, and M. Abolhasani, Reaction Chemistry & Engineering, 2024, Smart Dope: A Self-Driving Fluidic Lab for Accelerated Development of Doped Perovskite Quantum Dots. F. Bateni, S. Sadeghi, N. Orouji, J. A. Bennett, V. S. Punati, C. Stark, J. Wang, M. C. Rosko, O. Chen, F. N. Castellano, K. G. Reyes, M. Abolhasani, and M. Abolhasani, Advanced Energy Materials, 2023, Turbo Mode for Hydroaminomethylation of Olefins with CO2. J. A. Bennett and M. Abolhasani, Chem Catalysis, 2023, 3 (11), 100816. Autonomous Nanomanufacturing of Lead-Free Metal Halide Perovskite Nanocrystals Using a Self-Driving Fluidic Lab. S. Sadeghi, F. Bateni, T. Kim, D. Y. Son, J. A. Bennett, N. Orouji, V. S. Punati, C. Stark, T. D. Cerra, R. Awad, F. Delgado-Licona, J. Xu, N. Mukhin, H. Dickerson, K. G. Reyes, and M. Abolhasani, Nanoscale, 2024,16, 580-591. AlphaFlow: Autonomous Discovery and Optimization of Multi-Step Chemistry Using a Self-Driven Fluidic Lab Guided by Reinforcement Learning. A. A. Volk, R. W. Epps, D. T. Yonemoto, B. S. Masters, F. N. Castellano, K. G. Reyes, and M. Abolhasani, Nature Communications, 2023, 14, 1403. Continuous Ligand-Free Catalysis Using a Hybrid Polymer Network Support. B. A. Davis, J. Genzer, K. Efimenko, and M. Abolhasani, JACS Au, 2023, 3 (8), 2226–2236. Sustainable Materials Acceleration Platform Reveals Stable and Efficient Wide-Bandgap Metal Halide Perovskite Alloys. T. Wang, R. Li, H. Ardekani, L. Serrano-Lujan, J. Wang, M. Ramezani, R. Wilmington, M. Chauhan, R. W. Epps, K. Darabi, B. Guo, D. Sun, M. Abolhasani, K. Gundogdu, and A. Amassian, Matter, 2023, 6 (9), 2963-2986 The Rise of Self-Driving Labs in Chemical and Materials Sciences. M. Abolhasani* and E. Kumacheva, Nature Synthesis, 2023, 2, 483–492. Accelerated Photostability Studies of Colloidal Quantum Dots. H. Morshedian and M. Abolhasani, Solar RRL, 2023, 7 (10), 2201119. Role of AI in Experimental Materials Science. M. Abolhasani and K. A. Brown, MRS Bulletin, 2023, 48, 134–141. Accelerated Multi-Stage Synthesis of Indium Phosphide Quantum Dots in Modular Flow Reactors. R. W. Epps, F. D. Licona, H. Yang, T. Kim, A. A. Volk, S. Han, S. Jun, and M. Abolhasani, Advanced Materials Technologies, 2023, 8 (4), 2201845. Research Acceleration in Self-Driving Labs: Technological Roadmap Towards Accelerated Materials and Molecular Discovery. F. D, Licona and M. Abolhasani, Advanced Intelligent Systems, 2023, 5 (4), 2200331. Intensified Hydrogenation in Flow Using a Poly(β-cyclodextrin) Network-Supported Catalyst. B. A. Davis, J. A. Bennett, J. Genzer, K. Efimenko, and M. Abolhasani, ACS Sustainable Chemistry & Engineering, 2022, 10 (48), 15987–15998. Recyclable Cooperative Catalyst for Accelerated Hydroaminomethylation of Hindered Amines in a Continuous Segmented Flow Reactor. M. Y. S. Ibrahim and M. Abolhasani, Nature Communications, 2022, 13, 2441. Continuous Room-Temperature Hydrogen Release from Liquid Organic Carriers in a Photocatalytic Packed-Bed Flow Reactor. M. Y. S. Ibrahim, J. A. Bennett, and M. Abolhasani, ChemSusChem, 2022, 15 (14), e202200733. Flexible Homogeneous Hydroformylation: On-Demand Tuning of Aldehyde Branching with a Cyclic Fluorophosphite Ligand. M. Y. S. Ibrahim, J. A. Bennett, D. Mason, J. Rodgers, and M. Abolhasani, Journal of Catalysis,2022, 409, 105-117. Autonomous Chemical Science and Engineering Enabled by Self-Driving Laboratories. J. A. Bennett and M. Abolhasani, Current Opinion in Chemical Engineering, 2022, 36, 100831. Flow Synthesis of Single and Mixed Metal Oxides. Z. S. Campbell, S. Baro, Y. Gao, F. Li, and M. Abolhasani, Chemistry-Methods, 2022, 2 (8), e202200007. Flow Chemistry: A Sustainable Voyage Through the Chemical Universe en Route to Smart Manufacturing. A. A. Volk, Z. S. Campbell, M. Y. S. Ibrahim, J. A. Bennett, and M. Abolhasani, Annual Review of Chemical and Biomolecular Engineering, 2022, 13, 45-72. Autonomous Nanocrystal Doping by Self-Driving Fluidic Micro-Processors. F. Bateni, R. W. Epps, K. Antami, R. Dargis, J. A. Bennett, K. G. Reyes, and M. Abolhasani,Advanced Intelligent Systems, 2022, 4 (5), 2200017. CsPbI3 Nanocrystals Go with the Flow: From Formation Mechanism to Continuous Nanomanufacturing. K. Antami, F. Bateni, M. Ramezani, C. E. Hauke, F. N. Castellano, and M. Abolhasani, Advanced Functional Materials, 2022, 32 (6), 2108687. Modern Nanoscience: Convergence of AI, Robotics, and Colloidal Synthesis. R. W. Epps and M. Abolhasani, Applied Physics Reviews, 2021, 8(4), 041316. Universal self-driving laboratory for accelerated discovery of materials and molecules. R. W. Epps, A. A. Volk, M. Y. S. Ibrahim, and M. Abolhasani, Chem, 2021, 7 (10), 2541-2545. Intensified Recovery of Switchable Hydrophilicity Solvents in Flow. S. Han, M. Y. S. Ibrahim, and M. Abolhasani, Chemical Communications, 2021, 57 (86), 11310-11313. A Versatile Compact Parahydrogen Membrane Reactor​. P. TomHon, S. Han, S. Lehmkuhl, S. Appelt, E. Y. Chekmenev, M. Abolhasani, and T. Theis, ChemPhysChem, 2021 Continuous Biphasic Chemical Processes in a Four-Phase Segmented Flow Reactor​. A. A. Volk, R. W. Epps, D. T. Yonemoto, F. N. Castellano, and M. Abolhasani, Reaction Chemistry & Engineering, 2021, 6(8), 1367-1375. Ultrafast Cation Doping of Perovskite Quantum Dots in Flow. F. Bateni*, R. W. Epps*, K. Abdel-Latif, R. Dargis, S. Han, A. A. Volk, M. Ramezani, T. Cai, O. Chen, and M. Abolhasani, Matter, 2021, 4(7), 2429-2447. Continuous Ligand-Free Suzuki–Miyaura Cross-Coupling Reactions in a Cartridge Flow Reactor Using a Gel-Supported Catalyst​. J. A. Bennett*, B. A. Davis*, M. Ramezani, J. Genzer, K. Efimenko, and M. Abolhasani, Industrial & Engineering Chemistry Research, 2021, 60(26), 9418-9428. Autonomous Flow Reactors for Discovery and Invention​. A. A. Volk and M. Abolhasani, Trends in Chemistry, 2021, 3(7), 519-522. Intensified Continuous Extraction of Switchable Hydrophilicity Solvents Triggered by Carbon Dioxide. S. Han, M. Ramezani, P. Tomhon, K. Abdel-Latif, R. W. Epps, T. Theis, and M. Abolhasani, Green Chemistry, 2021, 23(8), 2900-2906. CFD-Based Computational Studies of Quantum Dot Size Control in Slug Flow Crystallizers: Handling Slug-to-Slug Variation. N. Sitapure, R.W. Epps, M. Abolhasani, and J.S. Kwon, Industrial & Engineering Chemistry Research, 2021, 60 (13), 4930–4941 Accelerated AI Development for Autonomous Materials Synthesis in Flow​. R. W. Epps, A. A. Volk, K. G. Reyes, and M. Abolhasani, Chemical Science, 2021, 12 (17), 6025-6036. Continuous Flow Solar Desorption of CO2 from Aqueous Amines. Z. S. Campbell, S. Han, S. Marre, and M. Abolhasani, ACS Sustainable Chemistry & Engineering, 2021, 9(6), 2570–2579. Self-Driven Multi-Step Quantum Dot Synthesis Enabled by Autonomous Robotic Experimentation in Flow. K. Abdel-Latif*, R. W. Epps*, F. Bateni, S. Han, K. G. Reyes, and M. Abolhasani, Advanced Intelligent Systems, 2021, 3(2), 2000245. Multiscale Modeling and Optimal Operation of Millifluidic Synthesis of Perovskite Quantum Dots: Towards Size-Controlled Continuous Manufacturing. N. Sitapure, R.W. Epps, M. Abolhasani, and J.S. Kwon, Chemical Engineering Journal, 2021, 413, 127905. Microfluidic Synthesis of Semiconductor Materials: Towards Accelerated Materials Development in Flow. Z. S. Campbell, F. Bateni, A. A. Volk, K. Abdel-Latif, and M. Abolhasani, Particle & Particle Systems Characterization, 2020, 37(12), 2000256. Facile Synthesis of a Color-Tunable Microcrystal Phosphor for Anti-Counterfeit Applications. C. Shi, X. Shen, Y. Zhu, X. Li, Z. Pang, M. Ge*, and M. Abolhasani*, ACS Omega, 2020, 5(50), 32420–32425. Flow Synthesis of Metal Halide Perovskite Quantum Dots: From Rapid Parameter Space Mapping to AI-Guided Modular Manufacturing. K. Abdel-Latif*, F. Bateni*, S. Crouse, and M. Abolhasani, Matter, 2020, 3(4), 1053-1086. Colloidal Quantum Dot Photovoltaics: Current Progress and Path to GW-Scale Enabled by Smart Manufacturing. A. Kirmani, J. M. Luther, M. Abolhasani, and A. Amassian, ACS Energy Letters, 2020, 5(9), 3069–3100. Network-Supported, Metal-Mediated Catalysis: Progress and Perspective. J. A. Bennett*, B. A. Davis*, K. Efimenko, J. Genzer, and M. Abolhasani, Reaction Chemistry & Engineering, 2020, 5(10), 1892-1902. Accelerated Development of Colloidal Nanomaterials Enabled by Modular Microfluidic Reactors: Towards Autonomous Robotic Experimentation. A. A. Volk, R. W. Epps, and M. Abolhasani, Advanced Materials, 2021, 33 (4), 2004495. Accelerating Gas-Liquid Chemical Reactions in Flow. S. Han, M. Kashfipour, M. Ramezani, and M. Abolhasani, Chemical Communications, 2020, 56(73), 10593-10606 Highly Efficient 1-Octene Hydroformylation at Low Syngas Pressure: From Single-Droplet Screening to Continuous Flow Synthesis. K. Raghuvanshi, C. Zhu, M. Ramezani, S. Menegatti, E. E. Santiso, D. Mason, J. Rodgers, M. E. Janka, and M. Abolhasani, ACS Catalysis, 2020, 10 (14), 7535–7542. Facile Synthesis of Anhydrous Microparticles Using Plug-and-Play Microfluidic Reactors. Z. S. Campbell and M. Abolhasani, Reaction Chemistry & Engineering, 2020,5 (7), 1198-1211.

推荐链接
down
wechat
bug