近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Wang, W-L.*, Fu, W. W., Frédéric Le Moigne , Robert Letscher , Yi Liu , Jin-Ming Tang , Fran?ois Primeau*, 2023: Biological carbon pump estimate based on multi-decadal hydrographic data. Nature, (in print)
Fu, W. W.* and O. Tsuneo, 2023: Editorial: Oxygen decline in coastal waters: its cause, present situation and future projection. Front. Mar. Sci., Volume 10, https://doi.org/10.3389/fmars.2023.1316092
Fu, W. W*., and W. L. Wang, 2022: Biogeochemical Equilibrium Responses to Maximal Productivity in High Nutrient Low Chlorophyll Regions. J Geophys Res-Biogeo, 127.
Fu, W. W*., J. K. Moore, F. Primeau, N. Collier, O. O. Ogunro, F. M. Hoffman, and J. T. Randerson, 2022: Evaluation of Ocean Biogeochemistry and Carbon Cycling in CMIP Earth System Models With the International Ocean Model Benchmarking (IOMB) Software System. J Geophys Res-Oceans, 127.
Fu, W. W*., J. K. Moore, F. W. Primeau, K. Lindsay, and J. T. Randerson, 2020: A Growing Freshwater Lens in the Arctic Ocean With Sustained Climate Warming Disrupts Marine Ecosystem Function. J Geophys Res-Biogeo, 125.
Martiny, A. C., M. W. Lomas, W. Fu, P. W. Boyd, Y. L. Chen, G. A. Cutter, 2019: Biogeochemical controls of surface ocean phosphate. Sci Adv, 5, eaax0341.
Moore, J. K*., Fu, W. W.* and Coauthors, 2018: Sustained climate warming drives declining marine biological productivity. Science, 359, 1139-1143. (highlighted by Science)
Liu, Y., and W. W. Fu, 2018: Assimilating high-resolution sea surface temperature data improves the ocean forecast potential in the Baltic Sea. Ocean Sci, 14, 525-541.
Fu, W. W.*, F. Primeau, J. K. Moore, K. Lindsay, and J. T. Randerson, 2018: Reversal of Increasing Tropical Ocean Hypoxia Trends With Sustained Climate Warming. Global Biogeochem Cy, 32, 551-564. (highlighted by Nature)
Fu, W. W.*, A. Bardin, and F. Primeau, 2018: Tracing ventilation source of tropical pacific oxygen minimum zones with an adjoint global ocean transport model. Deep-Sea Res Pt I, 139, 95-103.
Fu, W. W., 2018: Linkage between multi-model uncertainties and the role of ocean heat content in ocean carbon uptake. Ocean Dynam, 68, 1311-1319.
Fu, W. W., and F. Primeau, 2017: Application of a fast Newton-Krylov solver for equilibrium simulations of phosphorus and oxygen. Ocean Model, 119, 35-44.
Fu, W. W.*, J. T. Randerson, and J. K. Moore, 2016: Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences, 13, 5151-5170.
Fu, W. W., 2016: On the Role of Temperature and Salinity Data Assimilation to Constrain a Coupled Physical-Biogeochemical Model in the Baltic Sea. J Phys Oceanogr, 46, 713-729.
Randerson, J. T., Lindsay, K., E. Munoz, W. Fu and Coauthors, 2015: Multicentury changes in ocean and land contributions to the climate-carbon feedback. Global Biogeochem Cy, 29, 744-759. (highlighted by Nature)
Madsen, K. S., J. L. Hoyer, W. W. Fu, and C. Donlon, 2015: Blending of satellite and tide gauge sea level observations and its assimilation in a storm surge model of the North Sea and Baltic Sea. J Geophys Res-Oceans, 120, 6405-6418.
Fu, W. W., 2013: Estimating the volume and salt transports during a major inflow event in the Baltic Sea with the reanalysis of the hydrography based on 3DVAR. J Geophys Res-Oceans, 118, 3103-3113.
Fu, W. W., 2012: Altimetric data assimilation by EnOI and 3DVAR in a tropical pacific model: Impact on the simulation of variability. Adv Atmos Sci, 29, 823-837.
Fu, W.*, J. She, and M. Dobrynin, 2012: A 20-year reanalysis experiment in the Baltic Sea using three-dimensional variational (3DVAR) method. Ocean Sci, 8, 827-844.
Zhuang, S. Y., W. W. Fu*, and J. She, 2011: A pre-operational three Dimensional variational data assimilation system in the North/Baltic Sea. Ocean Sci, 7, 771-781.
Fu, W. W.*, and J. Zhu, 2011: Effects of Sea Level Data Assimilation by Ensemble Optimal Interpolation and 3D Variational Data Assimilation on the Simulation of Variability in a Tropical Pacific Model. J Atmos Ocean Tech, 28, 1624-1640.
Fu, W. W.*, J. She, and S. Y. Zhuang, 2011: Application of an Ensemble Optimal Interpolation in a North/Baltic Sea model: Assimilating temperature and salinity profiles. Ocean Model, 40, 227-245.
Fu, W.*, J. L. Hoyer, and J. She, 2011: Assessment of the three dimensional temperature and salinity observational networks in the Baltic Sea and North Sea. Ocean Sci, 7, 75-90.
Liu, Y., J. Zhu, J. She, S. Y. Zhuang, W. W. Fu, and J. D. Gao, 2009: Assimilating temperature and salinity profile observations using an anisotropic recursive filter in a coastal ocean model. Ocean Model, 30, 75-87.
Fu, W. W.*, J. Zhu, C. X. Yan, and H. L. Liu, 2009: Toward a global ocean data assimilation system based on ensemble optimum interpolation: altimetry data assimilation experiment. Ocean Dynam, 59, 587-602.
Fu, W. W.*, J. Zhu, and C. X. Yan, 2009: A comparison between 3DVAR and EnOI techniques for satellite altimetry data assimilation. Ocean Model, 26, 206-216.
Fu, W. W*., and G. Q. Zhou, 2007: Improved ENSO simulation in regional coupled GCM using regressive correction method. Sci China Ser D, 50, 1258-1265.
Zhu, J., G. Q. Zhou, C. X. Yan, W. W. Fu, and X. B. You, 2006: A three-dimensional variational ocean data assimilation system: Scheme and preliminary results. Sci China Ser D, 49, 1212-1222.
Fu, W. W.*, G. Q. Zhou, and J. Wang, 2006: Modeling the tropical Pacific Ocean using a regional coupled climate model. Adv Atmos Sci, 23, 625-638.
Zhou, G. Q., W. W. Fu, J. Zhu, and H. J. Wang, 2004: The impact of location-dependent correlation scales in ocean data assimilation. Geophys Res Lett, 31, L21306.
Fu, W. W., G. Q. Zhou, and H. J. Wang, 2004: Ocean data assimilation with background error covariance derived from OGCM outputs. Adv Atmos Sci, 21, 181-192.