近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Chang, J., Wang, G., Chang, X., Yang, Z., Wang, H., Li, B., Zhang, W., Kovarik, L., Du, Y., Orlovskaya, N., Xu, B., Wang, G., & Yang, Y. (2023). Interface synergism and engineering of Pd/Co@N-C for direct ethanol fuel cells. NATURE COMMUNICATIONS, 14(1), 1346.Springer Science and Business Media LLC. doi: 10.1038/s41467-023-37011-z.
Chen, X., Shan, W., Wu, D., Patel, S.B., Cai, N., Li, C., Ye, S., Liu, Z., Hwang, S., Zakharov, D.N., Boscoboinik, J.A., Wang, G., & Zhou, G. (2023). Atomistic mechanisms of water vapor-induced surface passivation. Sci Adv, 9(44), eadh5565.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.adh5565.
Fang, Y., Ohodnicki, P.R., & Wang, G. (2023). A machine learning based computational approach for prediction of cation distribution in spinel crystal. JOURNAL OF CHEMICAL PHYSICS, 158(19).AIP Publishing. doi: 10.1063/5.0146056.
Fang, Z., Li, B., Tan, S., Mao, S., & Wang, G. (2023). Revealing shear-coupled migration mechanism of a mixed tilt-twist grain boundary at atomic scale. ACTA MATERIALIA, 258, 119237.Elsevier BV. doi: 10.1016/j.actamat.2023.119237.
Mullurkara, S., Fang, Y., Taddei, K.M., Wang, G., & Ohodnicki, P. (2023). Experimental and Theoretical Investigation of Cation Site Occupation and Magnetic Ordering in CoFe2O4. IEEE Transactions on Magnetics, 59(11), 1-5.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/tmag.2023.3294018.
Wang, X., Zheng, S., Deng, C., Weinberger, C.R., Wang, G., & Mao, S.X. (2023). In Situ Atomic-Scale Observation of 5-Fold Twin Formation in Nanoscale Crystal under Mechanical Loading. NANO LETTERS, 23(2), 514-522.American Chemical Society (ACS). doi: 10.1021/acs.nanolett.2c03852.
Wang, Y., Li, B., Xue, B., Libretto, N., Xie, Z., Shen, H., Wang, C., Raciti, D., Marinkovic, N., Zong, H., Xie, W., Li, Z., Zhou, G., Vitek, J., Chen, J.G., Miller, J., Wang, G., Wang, C. (2023). CO electroreduction on single-atom copper. SCIENCE ADVANCES, 9(30), eade3557.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.ade3557.
Wu, Z.Y., Chen, F.Y., Lie, B., Yu, S.W., Finfrock, Y.Z., Meira, D.M., Yan, Q.Q., Zhu, P., Chen, M.X., Song, T.W., Yin, Z., Liang, H.W., Zhang, S., Wang, G., & Wang, H. (2023). Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. NATURE MATERIALS, 22(1), 100-+.Springer Science and Business Media LLC. doi: 10.1038/s41563-022-01380-5.
Yang, M., Li, B., Li, S., Dong, Q., Huang, Z., Zheng, S., Fang, Y., Zhou, G., Chen, X., Zhu, X., Li, T., Chi, M., Wang, G., Hu, L., & Ren, Z.J. (2023). Highly Selective Electrochemical Nitrate to Ammonia Conversion by Dispersed Ru in a Multielement Alloy Catalyst. NANO LETTERS, 23(16), 7733-7742.American Chemical Society (ACS). doi: 10.1021/acs.nanolett.3c01978.
Zeng, Y., Liang, J., Li, B., Yu, H., Zhang, B., Reeves, K.S., Cullen, D.A., Li, X., Su, D., Wang, G., Zhong, S., Xu, H., Macauley, N., & Wu, G. (2023). Pt Nanoparticles on Atomic-Metal-Rich Carbon for Heavy-Duty Fuel Cell Catalysts: Durability Enhancement and Degradation Behavior in Membrane Electrode Assemblies. ACS Catalysis, 13(18), 11871-11882.American Chemical Society (ACS). doi: 10.1021/acscatal.3c03270.
Zeng, Y., Liang, J., Li, C., Qiao, Z., Li, B., Hwang, S., Kariuki, N.N.N., Chang, C.W., Wang, M., Lyons, M., Lee, S., Feng, Z., Wang, G., Xie, J., Cullen, D.A.A., Myers, D.J.J., & Wu, G. (2023). Regulating Catalytic Properties and Thermal Stability of Pt and PtCo Intermetallic Fuel-Cell Catalysts via Strong Coupling Effects between Single-Metal Site-Rich Carbon and Pt. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 145(32), 17643-17655.American Chemical Society (ACS). doi: 10.1021/jacs.3c03345.
Zhang, S., & Wang, G. (2023). First principles prediction of yield strength of body centered cubic structured high entropy alloys. Materials Today Communications, 36, 106684.Elsevier BV. doi: 10.1016/j.mtcomm.2023.106684.
Zheng, T., Wang, J., Xia, Z., Wang, G., & Duan, Z. (2023). Spin-dependent active centers in Fe-N-C oxygen reduction catalysts revealed by constant-potential density functional theory. JOURNAL OF MATERIALS CHEMISTRY A, 11(36), 19360-19373.Royal Society of Chemistry (RSC). doi: 10.1039/d3ta03271j.
Chen, X., Zhang, S., Li, C., Liu, Z., Sun, X., Cheng, S., Zakharov, D.N., Hwang, S., Zhu, Y., Fang, J., Wang, G., & Zhou, G. (2022). Composition-dependent ordering transformations in Pt-Fe nanoalloys. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 119(14), e2117899119.Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.2117899119.
Cui, M., Yang, C., Hwang, S., Li, B., Dong, Q., Wu, M., Xie, H., Wang, X., Wang, G., & Hu, L. (2022). Rapid Atomic Ordering Transformation toward Intermetallic Nanoparticles. NANO LETTERS, 22(1), 255-262.American Chemical Society (ACS). doi: 10.1021/acs.nanolett.1c03714.
de Leon Nope, G., Wang, G., Alvarado-Orozco, J.M., & Gleeson, B. (2022). Role of Elemental Segregation on the Oxidation Behavior of Additively Manufactured Alloy 625. JOM, 74(4), 1698-1706.Springer Science and Business Media LLC. doi: 10.1007/s11837-022-05200-8.
Fang, Z., Xiao, J., Tan, S., Deng, C., Wang, G., & Mao, S.X. (2022). Atomic-scale observation of dynamic grain boundary structural transformation during shear-mediated migration. SCIENCE ADVANCES, 8(45), eabn3785.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.abn3785.
He, Y., She, D., Liu, Z., Wang, X., Zhong, L., Wang, C., Wang, G., & Mao, S.X. (2022). Atomistic observation on diffusion-mediated friction between single-asperity contacts. NATURE MATERIALS, 21(2), 173-+.Springer Science and Business Media LLC. doi: 10.1038/s41563-021-01091-3.
Li, B., Holby, E.F., & Wang, G. (2022). Mechanistic insights into metal, nitrogen doped carbon catalysts for oxygen reduction: progress in computational modeling. JOURNAL OF MATERIALS CHEMISTRY A, 10(45), 23959-23972.Royal Society of Chemistry (RSC). doi: 10.1039/d2ta05991f.
Li, Y., Adli, N.M., Shan, W., Wang, M., Zachman, M.J., Hwang, S., Tabassum, H., Karakalos, S., Feng, Z., Wang, G., Li, Y.C., & Wu, G. (2022). Atomically dispersed single Ni site catalysts for high-efficiency CO2 electroreduction at industrial-level current densities. ENERGY & ENVIRONMENTAL SCIENCE, 15(5), 2108-2119.Royal Society of Chemistry (RSC). doi: 10.1039/d2ee00318j.
Li, Y., Shan, W., Zachman, M.J., Wang, M., Hwang, S., Tabassum, H., Yang, J., Yang, X., Karakalos, S., Feng, Z., Wang, G., & Wu, G. (2022). Atomically Dispersed Dual-Metal Site Catalysts for Enhanced CO2 Reduction: Mechanistic Insight into Active Site Structures. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 61(28), e202205632.Wiley. doi: 10.1002/anie.202205632.
Liu, S., Li, C., Zachman, M.J., Zeng, Y., Yu, H., Li, B., Wang, M., Braaten, J., Liu, J., Meyer, H.M., Lucero, M., Kropf, A.J., Alp, E.E., Gong, Q., Shi, Q., Feng, Z., Xu, H., Wang, G., Myers, D.J., Xie, J., Cullen, D.A., Litster, S., & Wu, G. (2022). Atomically dispersed iron sites with a nitrogen-carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. NATURE ENERGY, 7(7), 652-663.Springer Science and Business Media LLC. doi: 10.1038/s41560-022-01062-1.
Wang, X., Liu, Z., He, Y., Tan, S., Wang, G., & Mao, S.X. (2022). Atomic-scale friction between single-asperity contacts unveiled through in situ transmission electron microscopy. NATURE NANOTECHNOLOGY, 17(7), 737-+.Springer Science and Business Media LLC. doi: 10.1038/s41565-022-01126-z.
Wang, X., Liu, Z., He, Y., Tan, S., Wang, G., & Mao, S.X. (2022). Atomic-scale friction between single-asperity contacts unveiled through in situ transmission electron microscopy (May, 10.1038/s41565-022-01126-z, 2022). NATURE NANOTECHNOLOGY, 17(7), 799.Springer Science and Business Media LLC. doi: 10.1038/s41565-022-01167-4.
Yao, Y., Dong, Q., Brozena, A., Luo, J., Miao, J., Chi, M., Wang, C., Kevrekidis, I.G., Ren, Z.J., Greeley, J., Wang, G., Anapolsky, A., & Hu, L. (2022). High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery. SCIENCE, 376(6589), 151-+.American Association for the Advancement of Science (AAAS). doi: 10.1126/science.abn3103.
Zhang, W., Chang, J., Wang, G., Li, Z., Wang, M., Zhu, Y., Li, B., Zhou, H., Wang, G., Gu, M., Feng, Z., & Yang, Y. (2022). Surface oxygenation induced strong interaction between Pd catalyst and functional support for zinc-air batteries. ENERGY & ENVIRONMENTAL SCIENCE, 15(4), 1573-1584.Royal Society of Chemistry (RSC). doi: 10.1039/d1ee03972e.
Chang, J., Wang, G., Wang, M., Wang, Q., Li, B., Zhou, H., Zhu, Y., Zhang, W., Omer, M., Orlovskaya, N., Ma, Q., Gu, M., Feng, Z., Wang, G., & Yang, Y. (2021). Improving Pd-N-C fuel cell electrocatalysts through fluorination-driven rearrangements of local coordination environment. NATURE ENERGY, 6(12), 1144-1153.Springer Science and Business Media LLC. doi: 10.1038/s41560-021-00940-4.
Chang, J., Wang, G., Yang, Z., Li, B., Wang, Q., Kuliiev, R., Orlovskaya, N., Gu, M., Du, Y., Wang, G., & Yang, Y. (2021). Dual-Doping and Synergism toward High-Performance Seawater Electrolysis. ADVANCED MATERIALS, 33(33), e2101425.Wiley. doi: 10.1002/adma.202101425.
Cui, M., Yang, C., Li, B., Dong, Q., Wu, M., Hwang, S., Xie, H., Wang, X., Wang, G., & Hu, L. (2021). High‐Entropy Metal Sulfide Nanoparticles Promise High‐Performance Oxygen Evolution Reaction. Advanced Energy Materials, 11(3).Wiley. doi: 10.1002/aenm.202002887.
Guo, L., Hwang, S., Li, B., Yang, F., Wang, M., Chen, M., Yang, X., Karakalos, S.G., Cullen, D.A., Feng, Z., Wang, G., Wu, G., & Xu, H. (2021). Promoting Atomically Dispersed MnN4 Sites via Sulfur Doping for Oxygen Reduction: Unveiling Intrinsic Activity and Degradation in Fuel Cells. ACS NANO, 15(4), 6886-6899.American Chemical Society (ACS). doi: 10.1021/acsnano.0c10637.
Guo, Y., Cai, X., Shen, S., Wang, G., & Zhang, J. (2021). Computational prediction and experimental evaluation of nitrate reduction to ammonia on rhodium. JOURNAL OF CATALYSIS, 402, 1-9.Elsevier BV. doi: 10.1016/j.jcat.2021.08.016.
Guo, Y., Li, B., Shen, S., Luo, L., Wang, G., & Zhang, J. (2021). Potential-Dependent Mechanistic Study of Ethanol Electro-oxidation on Palladium. ACS APPLIED MATERIALS & INTERFACES, 13(14), 16602-16610.American Chemical Society (ACS). doi: 10.1021/acsami.1c04513.
Guo, Y., Wang, G., Shen, S., Wei, G., Xia, G., & Zhang, J. (2021). On scaling relations of single atom catalysts for electrochemical ammonia synthesis. Applied Surface Science, 550, 149283.Elsevier BV. doi: 10.1016/j.apsusc.2021.149283.
He, Y., Shi, Q., Shan, W., Li, X., Kropf, A.J., Wegener, E.C., Wright, J., Karakalos, S., Su, D., Cullen, D.A., Wang, G., Myers, D.J., & Wu, G. (2021). Dynamically Unveiling Metal-Nitrogen Coordination during Thermal Activation to Design High-Efficient Atomically Dispersed CoN4 Active Sites. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 60(17), 9516-9526.Wiley. doi: 10.1002/anie.202017288.
Li, J., Zhang, S., Li, C., Zhu, Y., Boscoboinik, J.A., Tong, X., Sadowski, J.T., Wang, G., & Zhou, G. (2021). Coupling between bulk thermal defects and surface segregation dynamics. PHYSICAL REVIEW B, 104(8).American Physical Society (APS). doi: 10.1103/PhysRevB.104.085408.
Li, T., Yao, Y., Huang, Z., Xie, P., Liu, Z., Yang, M., Gao, J., Zeng, K., Brozena, A.H., Pastel, G., Jiao, M., Dong, Q., Dai, J., Li, S., Zong, H., Chi, M., Luo, J., Mo, Y., Wang, G., Wang, C., Shahbazian-Yassar, R., & Hu, L. (2021). Denary oxide nanoparticles as highly stable catalysts for methane combustion. NATURE CATALYSIS, 4(1), 62-70.Springer Science and Business Media LLC. doi: 10.1038/s41929-020-00554-1.
Li, T., Yao, Y., Huang, Z., Xie, P., Liu, Z., Yang, M., Gao, J., Zeng, K., Brozena, A.H., Pastel, G., Jiao, M., Dong, Q., Dai, J., Li, S., Zong, H., Chi, M., Luo, J., Mo, Y., Wang, G., Wang, C., Shahbazian-Yassar, R., & Hu, L. (2021). Denary oxide nanoparticles as highly stable catalysts for methane combustion (vol 4, pg 62, 2021). NATURE CATALYSIS, 4(5), 439.Springer Science and Business Media LLC. doi: 10.1038/s41929-021-00613-1.
Li, X., He, Y., Cheng, S., Li, B., Zeng, Y., Xie, Z., Meng, Q., Ma, L., Kisslinger, K., Tong, X., Hwang, S., Yao, S., Li, C., Qiao, Z., Shan, C., Zhu, Y., Xie, J., Wang, G., Wu, G., & Su, D. (2021). Atomic Structure Evolution of Pt-Co Binary Catalysts: Single Metal Sites versus Intermetallic Nanocrystals. ADVANCED MATERIALS, 33(48), e2106371.Wiley. doi: 10.1002/adma.202106371.
Liu, K., Zhang, S., Wu, D., Luo, L., Sun, X., Chen, X., Zakharov, D., Cheng, S., Zhu, Y., Yang, J.C., Wang, G., & Zhou, G. (2021). Effect of surface steps on chemical ordering in the subsurface of Cu(Au) solid solutions. PHYSICAL REVIEW B, 103(3).American Physical Society (APS). doi: 10.1103/PhysRevB.103.035401.
Mohd Adli, N., Shan, W., Hwang, S., Samarakoon, W., Karakalos, S., Li, Y., Cullen, D.A., Su, D., Feng, Z., Wang, G., & Wu, G. (2021). Engineering Atomically Dispersed FeN4 Active Sites for CO2 Electroreduction. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 60(2), 1022-1032.Wiley. doi: 10.1002/anie.202012329.
Qiao, Z., Wang, C., Li, C., Zeng, Y., Hwang, S., Li, B., Karakalos, S., Park, J., Kropf, A.J., Wegener, E.C., Gong, Q., Xu, H., Wang, G., Myers, D.J., Xie, J., Spendelow, J.S., & Wu, G. (2021). Atomically dispersed single iron sites for promoting Pt and Pt3Co fuel cell catalysts: performance and durability improvements. ENERGY & ENVIRONMENTAL SCIENCE, 14(9), 4948-4960.Royal Society of Chemistry (RSC). doi: 10.1039/d1ee01675j.
Shan, W., & Wang, G. (2021). Enhancing Catalytic Properties of Iron- and Nitrogen-Doped Carbon for Nitrogen Reduction through Structural Distortion: A Density Functional Theory Study. JOURNAL OF PHYSICAL CHEMISTRY C, 125(29), 16004-16012.American Chemical Society (ACS). doi: 10.1021/acs.jpcc.1c04510.
Stecker, C., Liu, Z., Hieulle, J., Zhang, S., Ono, L.K., Wang, G., & Qi, Y. (2021). Atomic Scale Investigation of the CuPc-MAPbX3 Interface and the Effect of Non-Stoichiometric Perovskite Films on Interfacial Structures. ACS NANO, 15(9), 14813-14821.American Chemical Society (ACS). doi: 10.1021/acsnano.1c04867.
Xie, H., Liu, Y., Li, N., Li, B., Kline, D.J., Yao, Y., Zachariah, M.R., Wang, G., Su, D., Wang, C., & Hu, L. (2021). High-temperature-pulse synthesis of ultrathin-graphene-coated metal nanoparticles. Nano Energy, 80, 105536.Elsevier BV. doi: 10.1016/j.nanoen.2020.105536.
Chen, M., Li, X., Yang, F., Li, B., Stracensky, T., Karakalos, S., Mukerjee, S., Jia, Q., Su, D., Wang, G., Wu, G., & Xu, H. (2020). Atomically Dispersed MnN4 Catalysts via Environmentally Benign Aqueous Synthesis for Oxygen Reduction: Mechanistic Understanding of Activity and Stability Improvements. ACS CATALYSIS, 10(18), 10523-10534.American Chemical Society (ACS). doi: 10.1021/acscatal.0c02490.
He, Y., Guo, H., Hwang, S., Yang, X., He, Z., Braaten, J., Karakalos, S., Shan, W., Wang, M., Zhou, H., Feng, Z., More, K.L., Wang, G., Su, D., Cullen, D.A., Fei, L., Litster, S., & Wu, G. (2020). Single Cobalt Sites Dispersed in Hierarchically Porous Nanofiber Networks for Durable and High-Power PGM-Free Cathodes in Fuel Cells. ADVANCED MATERIALS, 32(46), e2003577.Wiley. doi: 10.1002/adma.202003577.
Holby, E.F., Wang, G., & Zelenay, P. (2020). Acid Stability and Demetalation of PGM-Free ORR Electrocatalyst Structures from Density Functional Theory: A Model for "Single-Atom Catalyst" Dissolution. ACS CATALYSIS, 10(24), 14527-14539.American Chemical Society (ACS). doi: 10.1021/acscatal.0c02856.
Mukherjee, S., Yang, X., Shan, W., Samarakoon, W., Karakalos, S., Cullen, D.A., More, K., Wang, M., Feng, Z., Wang, G., & Wu, G. (2020). Atomically Dispersed Single Ni Site Catalysts for Nitrogen Reduction toward Electrochemical Ammonia Synthesis Using N2 and H2O. SMALL METHODS, 4(6).Wiley. doi: 10.1002/smtd.201900821.
Pan, F., Li, B., Sarnello, E., Fei, Y., Feng, X., Gang, Y., Xiang, X., Fang, L., Li, T., Hu, Y.H., Wang, G., & Li, Y. (2020). Pore-Edge Tailoring of Single-Atom Iron-Nitrogen Sites on Graphene for Enhanced CO2 Reduction. ACS CATALYSIS, 10(19), 10803-10811.American Chemical Society (ACS). doi: 10.1021/acscatal.0c02499.
Pan, F., Li, B., Sarnello, E., Fei, Y., Gang, Y., Xiang, X., Du, Z., Zhang, P., Wang, G., Nguyen, H.T., Li, T., Hu, Y.H., Zhou, H.C., & Li, Y. (2020). Atomically Dispersed Iron-Nitrogen Sites on Hierarchically Mesoporous Carbon Nanotube and Graphene Nanoribbon Networks for CO2 Reduction. ACS NANO, 14(5), 5506-5516.American Chemical Society (ACS). doi: 10.1021/acsnano.9b09658.
Pan, F., Li, B., Sarnello, E., Hwang, S., Gang, Y., Feng, X., Xiang, X., Adli, N.M., Li, T., Su, D., Wu, G., Wang, G., & Li, Y. (2020). Boosting CO2 reduction on Fe-N-C with sulfur incorporation: Synergistic electronic and structural engineering. NANO ENERGY, 68, 104384.Elsevier BV. doi: 10.1016/j.nanoen.2019.104384.
Qiao, Y., Liu, Y., Liu, Y., Dong, Q., Zhong, G., Wang, X., Liu, Z., Wang, X., He, S., Zhou, W., Wang, G., Wang, C., & Hu, L. (2020). Thermal Radiation Synthesis of Ultrafine Platinum Nanoclusters toward Methanol Oxidation. SMALL METHODS, 4(9).Wiley. doi: 10.1002/smtd.202000265.
Sun, X., Zhu, W., Wu, D., Liu, Z., Chen, X., Yuan, L., Wang, G., Sharma, R., & Zhou, G. (2020). Atomic-Scale Mechanism of Unidirectional Oxide Growth. ADVANCED FUNCTIONAL MATERIALS, 30(4).Wiley. doi: 10.1002/adfm.201906504.
Xie, X., He, C., Li, B., He, Y., Cullen, D.A., Wegener, E.C., Kropf, A.J., Martinez, U., Cheng, Y., Engelhard, M.H., Bowden, M.E., Song, M., Lemmon, T., Li, X.S., Nie, Z., Liu, J., Myers, D.J., Zelenay, P., Wang, G., Wu, G., Ramani, V., & Shao, Y. (2020). Performance enhancement and degradation mechanism identification of a single-atom Co-N-C catalyst for proton exchange membrane fuel cells. NATURE CATALYSIS, 3(12), 1044-1054.Springer Science and Business Media LLC. doi: 10.1038/s41929-020-00546-1.
Xu, Z., Zhou, Z., Li, B., Wang, G., & Leu, P.W. (2020). Identification of Efficient Active Sites in Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction Reaction. JOURNAL OF PHYSICAL CHEMISTRY C, 124(16), 8689-8696.American Chemical Society (ACS). doi: 10.1021/acs.jpcc.9b11090.
Yang, C., Ko, B.H., Hwang, S., Liu, Z., Yao, Y., Luc, W., Cui, M., Malkani, A.S., Li, T., Wang, X., Dai, J., Xu, B., Wang, G., Su, D., Jiao, F., & Hu, L. (2020). Overcoming immiscibility toward bimetallic catalyst library. Sci Adv, 6(17), eaaz6844.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.aaz6844.
Yao, Y., Liu, Z., Xie, P., Huang, Z., Li, T., Morris, D., Finfrock, Z., Zhou, J., Jiao, M., Gao, J., Mao, Y., Miao, J.J., Zhang, P., Shahbazian-Yassar, R., Wang, C., Wang, G., & Hu, L. (2020). Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts. SCIENCE ADVANCES, 6(11), eaaz0510.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.aaz0510.
Zeng, Y., Priest, C., Wang, G., & Wu, G. (2020). Restoring the Nitrogen Cycle by Electrochemical Reduction of Nitrate: Progress and Prospects. SMALL METHODS, 4(12).Wiley. doi: 10.1002/smtd.202000672.
Zheng, Y., Liu, Z., Lei, Y., Zhang, C., Chen, H., Wang, G., & Yang, Z.G. (2020). First-Principles Calculated Structures and Carbon Binding Energies of Σ11 {10(1)over-bar1}/{10(1)over-bar(1)over-bar} Tilt Grain Boundaries in Corundum Structured Metal Oxides. OXIDATION OF METALS, 94(1-2), 37-49.Springer Science and Business Media LLC. doi: 10.1007/s11085-020-09977-4.
Zou, L., Cao, P., Lei, Y., Zakharov, D., Sun, X., House, S.D., Luo, L., Li, J., Yang, Y., Yin, Q., Chen, X., Li, C., Qin, H., Stach, E.A., Yang, J.C., Wang, G., & Zhou, G. (2020). Atomic-scale phase separation induced clustering of solute atoms. NATURE COMMUNICATIONS, 11(1), 3934.Springer Science and Business Media LLC. doi: 10.1038/s41467-020-17826-w.
Zou, L., He, Y., Liu, Z., Jia, H., Zhu, J., Zheng, J., Wang, G., Li, X., Xiao, J., Liu, J., Zhang, J.G., Chen, G., & Wang, C. (2020). Unlocking the passivation nature of the cathode-air interfacial reactions in lithium ion batteries. NATURE COMMUNICATIONS, 11(1), 3204.Springer Science and Business Media LLC. doi: 10.1038/s41467-020-17050-6.