当前位置: X-MOL首页全球导师 海外导师 › Wang, Guofeng

个人简介

BIOGRAPHY Ph.D., Materials Science (minor in Computer Science), California Institute of Technology, 2002 M.S., Materials Science, California Institute of Technology, 1999 M.E., Materials Science and Engineering, Tsinghua University, 1997 B.E., Materials Science and Engineering, Tsinghua University, 1995 AWARDS (2010) NSF fellowship to attend summer school "Mechanics of Soft Materials" at Northwestern University in 2010. (2002) Silver award winner of Graduate Student Award at 2002 spring MRS meeting.

研究领域

BIMETALLIC CATALYST NANOPARTICLES

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Chang, J., Wang, G., Chang, X., Yang, Z., Wang, H., Li, B., Zhang, W., Kovarik, L., Du, Y., Orlovskaya, N., Xu, B., Wang, G., & Yang, Y. (2023). Interface synergism and engineering of Pd/Co@N-C for direct ethanol fuel cells. NATURE COMMUNICATIONS, 14(1), 1346.Springer Science and Business Media LLC. doi: 10.1038/s41467-023-37011-z. Chen, X., Shan, W., Wu, D., Patel, S.B., Cai, N., Li, C., Ye, S., Liu, Z., Hwang, S., Zakharov, D.N., Boscoboinik, J.A., Wang, G., & Zhou, G. (2023). Atomistic mechanisms of water vapor-induced surface passivation. Sci Adv, 9(44), eadh5565.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.adh5565. Fang, Y., Ohodnicki, P.R., & Wang, G. (2023). A machine learning based computational approach for prediction of cation distribution in spinel crystal. JOURNAL OF CHEMICAL PHYSICS, 158(19).AIP Publishing. doi: 10.1063/5.0146056. Fang, Z., Li, B., Tan, S., Mao, S., & Wang, G. (2023). Revealing shear-coupled migration mechanism of a mixed tilt-twist grain boundary at atomic scale. ACTA MATERIALIA, 258, 119237.Elsevier BV. doi: 10.1016/j.actamat.2023.119237. Mullurkara, S., Fang, Y., Taddei, K.M., Wang, G., & Ohodnicki, P. (2023). Experimental and Theoretical Investigation of Cation Site Occupation and Magnetic Ordering in CoFe2O4. IEEE Transactions on Magnetics, 59(11), 1-5.Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/tmag.2023.3294018. Wang, X., Zheng, S., Deng, C., Weinberger, C.R., Wang, G., & Mao, S.X. (2023). In Situ Atomic-Scale Observation of 5-Fold Twin Formation in Nanoscale Crystal under Mechanical Loading. NANO LETTERS, 23(2), 514-522.American Chemical Society (ACS). doi: 10.1021/acs.nanolett.2c03852. Wang, Y., Li, B., Xue, B., Libretto, N., Xie, Z., Shen, H., Wang, C., Raciti, D., Marinkovic, N., Zong, H., Xie, W., Li, Z., Zhou, G., Vitek, J., Chen, J.G., Miller, J., Wang, G., Wang, C. (2023). CO electroreduction on single-atom copper. SCIENCE ADVANCES, 9(30), eade3557.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.ade3557. Wu, Z.Y., Chen, F.Y., Lie, B., Yu, S.W., Finfrock, Y.Z., Meira, D.M., Yan, Q.Q., Zhu, P., Chen, M.X., Song, T.W., Yin, Z., Liang, H.W., Zhang, S., Wang, G., & Wang, H. (2023). Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. NATURE MATERIALS, 22(1), 100-+.Springer Science and Business Media LLC. doi: 10.1038/s41563-022-01380-5. Yang, M., Li, B., Li, S., Dong, Q., Huang, Z., Zheng, S., Fang, Y., Zhou, G., Chen, X., Zhu, X., Li, T., Chi, M., Wang, G., Hu, L., & Ren, Z.J. (2023). Highly Selective Electrochemical Nitrate to Ammonia Conversion by Dispersed Ru in a Multielement Alloy Catalyst. NANO LETTERS, 23(16), 7733-7742.American Chemical Society (ACS). doi: 10.1021/acs.nanolett.3c01978. Zeng, Y., Liang, J., Li, B., Yu, H., Zhang, B., Reeves, K.S., Cullen, D.A., Li, X., Su, D., Wang, G., Zhong, S., Xu, H., Macauley, N., & Wu, G. (2023). Pt Nanoparticles on Atomic-Metal-Rich Carbon for Heavy-Duty Fuel Cell Catalysts: Durability Enhancement and Degradation Behavior in Membrane Electrode Assemblies. ACS Catalysis, 13(18), 11871-11882.American Chemical Society (ACS). doi: 10.1021/acscatal.3c03270. Zeng, Y., Liang, J., Li, C., Qiao, Z., Li, B., Hwang, S., Kariuki, N.N.N., Chang, C.W., Wang, M., Lyons, M., Lee, S., Feng, Z., Wang, G., Xie, J., Cullen, D.A.A., Myers, D.J.J., & Wu, G. (2023). Regulating Catalytic Properties and Thermal Stability of Pt and PtCo Intermetallic Fuel-Cell Catalysts via Strong Coupling Effects between Single-Metal Site-Rich Carbon and Pt. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 145(32), 17643-17655.American Chemical Society (ACS). doi: 10.1021/jacs.3c03345. Zhang, S., & Wang, G. (2023). First principles prediction of yield strength of body centered cubic structured high entropy alloys. Materials Today Communications, 36, 106684.Elsevier BV. doi: 10.1016/j.mtcomm.2023.106684. Zheng, T., Wang, J., Xia, Z., Wang, G., & Duan, Z. (2023). Spin-dependent active centers in Fe-N-C oxygen reduction catalysts revealed by constant-potential density functional theory. JOURNAL OF MATERIALS CHEMISTRY A, 11(36), 19360-19373.Royal Society of Chemistry (RSC). doi: 10.1039/d3ta03271j. Chen, X., Zhang, S., Li, C., Liu, Z., Sun, X., Cheng, S., Zakharov, D.N., Hwang, S., Zhu, Y., Fang, J., Wang, G., & Zhou, G. (2022). Composition-dependent ordering transformations in Pt-Fe nanoalloys. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 119(14), e2117899119.Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.2117899119. Cui, M., Yang, C., Hwang, S., Li, B., Dong, Q., Wu, M., Xie, H., Wang, X., Wang, G., & Hu, L. (2022). Rapid Atomic Ordering Transformation toward Intermetallic Nanoparticles. NANO LETTERS, 22(1), 255-262.American Chemical Society (ACS). doi: 10.1021/acs.nanolett.1c03714. de Leon Nope, G., Wang, G., Alvarado-Orozco, J.M., & Gleeson, B. (2022). Role of Elemental Segregation on the Oxidation Behavior of Additively Manufactured Alloy 625. JOM, 74(4), 1698-1706.Springer Science and Business Media LLC. doi: 10.1007/s11837-022-05200-8. Fang, Z., Xiao, J., Tan, S., Deng, C., Wang, G., & Mao, S.X. (2022). Atomic-scale observation of dynamic grain boundary structural transformation during shear-mediated migration. SCIENCE ADVANCES, 8(45), eabn3785.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.abn3785. He, Y., She, D., Liu, Z., Wang, X., Zhong, L., Wang, C., Wang, G., & Mao, S.X. (2022). Atomistic observation on diffusion-mediated friction between single-asperity contacts. NATURE MATERIALS, 21(2), 173-+.Springer Science and Business Media LLC. doi: 10.1038/s41563-021-01091-3. Li, B., Holby, E.F., & Wang, G. (2022). Mechanistic insights into metal, nitrogen doped carbon catalysts for oxygen reduction: progress in computational modeling. JOURNAL OF MATERIALS CHEMISTRY A, 10(45), 23959-23972.Royal Society of Chemistry (RSC). doi: 10.1039/d2ta05991f. Li, Y., Adli, N.M., Shan, W., Wang, M., Zachman, M.J., Hwang, S., Tabassum, H., Karakalos, S., Feng, Z., Wang, G., Li, Y.C., & Wu, G. (2022). Atomically dispersed single Ni site catalysts for high-efficiency CO2 electroreduction at industrial-level current densities. ENERGY & ENVIRONMENTAL SCIENCE, 15(5), 2108-2119.Royal Society of Chemistry (RSC). doi: 10.1039/d2ee00318j. Li, Y., Shan, W., Zachman, M.J., Wang, M., Hwang, S., Tabassum, H., Yang, J., Yang, X., Karakalos, S., Feng, Z., Wang, G., & Wu, G. (2022). Atomically Dispersed Dual-Metal Site Catalysts for Enhanced CO2 Reduction: Mechanistic Insight into Active Site Structures. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 61(28), e202205632.Wiley. doi: 10.1002/anie.202205632. Liu, S., Li, C., Zachman, M.J., Zeng, Y., Yu, H., Li, B., Wang, M., Braaten, J., Liu, J., Meyer, H.M., Lucero, M., Kropf, A.J., Alp, E.E., Gong, Q., Shi, Q., Feng, Z., Xu, H., Wang, G., Myers, D.J., Xie, J., Cullen, D.A., Litster, S., & Wu, G. (2022). Atomically dispersed iron sites with a nitrogen-carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. NATURE ENERGY, 7(7), 652-663.Springer Science and Business Media LLC. doi: 10.1038/s41560-022-01062-1. Wang, X., Liu, Z., He, Y., Tan, S., Wang, G., & Mao, S.X. (2022). Atomic-scale friction between single-asperity contacts unveiled through in situ transmission electron microscopy. NATURE NANOTECHNOLOGY, 17(7), 737-+.Springer Science and Business Media LLC. doi: 10.1038/s41565-022-01126-z. Wang, X., Liu, Z., He, Y., Tan, S., Wang, G., & Mao, S.X. (2022). Atomic-scale friction between single-asperity contacts unveiled through in situ transmission electron microscopy (May, 10.1038/s41565-022-01126-z, 2022). NATURE NANOTECHNOLOGY, 17(7), 799.Springer Science and Business Media LLC. doi: 10.1038/s41565-022-01167-4. Yao, Y., Dong, Q., Brozena, A., Luo, J., Miao, J., Chi, M., Wang, C., Kevrekidis, I.G., Ren, Z.J., Greeley, J., Wang, G., Anapolsky, A., & Hu, L. (2022). High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery. SCIENCE, 376(6589), 151-+.American Association for the Advancement of Science (AAAS). doi: 10.1126/science.abn3103. Zhang, W., Chang, J., Wang, G., Li, Z., Wang, M., Zhu, Y., Li, B., Zhou, H., Wang, G., Gu, M., Feng, Z., & Yang, Y. (2022). Surface oxygenation induced strong interaction between Pd catalyst and functional support for zinc-air batteries. ENERGY & ENVIRONMENTAL SCIENCE, 15(4), 1573-1584.Royal Society of Chemistry (RSC). doi: 10.1039/d1ee03972e. Chang, J., Wang, G., Wang, M., Wang, Q., Li, B., Zhou, H., Zhu, Y., Zhang, W., Omer, M., Orlovskaya, N., Ma, Q., Gu, M., Feng, Z., Wang, G., & Yang, Y. (2021). Improving Pd-N-C fuel cell electrocatalysts through fluorination-driven rearrangements of local coordination environment. NATURE ENERGY, 6(12), 1144-1153.Springer Science and Business Media LLC. doi: 10.1038/s41560-021-00940-4. Chang, J., Wang, G., Yang, Z., Li, B., Wang, Q., Kuliiev, R., Orlovskaya, N., Gu, M., Du, Y., Wang, G., & Yang, Y. (2021). Dual-Doping and Synergism toward High-Performance Seawater Electrolysis. ADVANCED MATERIALS, 33(33), e2101425.Wiley. doi: 10.1002/adma.202101425. Cui, M., Yang, C., Li, B., Dong, Q., Wu, M., Hwang, S., Xie, H., Wang, X., Wang, G., & Hu, L. (2021). High‐Entropy Metal Sulfide Nanoparticles Promise High‐Performance Oxygen Evolution Reaction. Advanced Energy Materials, 11(3).Wiley. doi: 10.1002/aenm.202002887. Guo, L., Hwang, S., Li, B., Yang, F., Wang, M., Chen, M., Yang, X., Karakalos, S.G., Cullen, D.A., Feng, Z., Wang, G., Wu, G., & Xu, H. (2021). Promoting Atomically Dispersed MnN4 Sites via Sulfur Doping for Oxygen Reduction: Unveiling Intrinsic Activity and Degradation in Fuel Cells. ACS NANO, 15(4), 6886-6899.American Chemical Society (ACS). doi: 10.1021/acsnano.0c10637. Guo, Y., Cai, X., Shen, S., Wang, G., & Zhang, J. (2021). Computational prediction and experimental evaluation of nitrate reduction to ammonia on rhodium. JOURNAL OF CATALYSIS, 402, 1-9.Elsevier BV. doi: 10.1016/j.jcat.2021.08.016. Guo, Y., Li, B., Shen, S., Luo, L., Wang, G., & Zhang, J. (2021). Potential-Dependent Mechanistic Study of Ethanol Electro-oxidation on Palladium. ACS APPLIED MATERIALS & INTERFACES, 13(14), 16602-16610.American Chemical Society (ACS). doi: 10.1021/acsami.1c04513. Guo, Y., Wang, G., Shen, S., Wei, G., Xia, G., & Zhang, J. (2021). On scaling relations of single atom catalysts for electrochemical ammonia synthesis. Applied Surface Science, 550, 149283.Elsevier BV. doi: 10.1016/j.apsusc.2021.149283. He, Y., Shi, Q., Shan, W., Li, X., Kropf, A.J., Wegener, E.C., Wright, J., Karakalos, S., Su, D., Cullen, D.A., Wang, G., Myers, D.J., & Wu, G. (2021). Dynamically Unveiling Metal-Nitrogen Coordination during Thermal Activation to Design High-Efficient Atomically Dispersed CoN4 Active Sites. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 60(17), 9516-9526.Wiley. doi: 10.1002/anie.202017288. Li, J., Zhang, S., Li, C., Zhu, Y., Boscoboinik, J.A., Tong, X., Sadowski, J.T., Wang, G., & Zhou, G. (2021). Coupling between bulk thermal defects and surface segregation dynamics. PHYSICAL REVIEW B, 104(8).American Physical Society (APS). doi: 10.1103/PhysRevB.104.085408. Li, T., Yao, Y., Huang, Z., Xie, P., Liu, Z., Yang, M., Gao, J., Zeng, K., Brozena, A.H., Pastel, G., Jiao, M., Dong, Q., Dai, J., Li, S., Zong, H., Chi, M., Luo, J., Mo, Y., Wang, G., Wang, C., Shahbazian-Yassar, R., & Hu, L. (2021). Denary oxide nanoparticles as highly stable catalysts for methane combustion. NATURE CATALYSIS, 4(1), 62-70.Springer Science and Business Media LLC. doi: 10.1038/s41929-020-00554-1. Li, T., Yao, Y., Huang, Z., Xie, P., Liu, Z., Yang, M., Gao, J., Zeng, K., Brozena, A.H., Pastel, G., Jiao, M., Dong, Q., Dai, J., Li, S., Zong, H., Chi, M., Luo, J., Mo, Y., Wang, G., Wang, C., Shahbazian-Yassar, R., & Hu, L. (2021). Denary oxide nanoparticles as highly stable catalysts for methane combustion (vol 4, pg 62, 2021). NATURE CATALYSIS, 4(5), 439.Springer Science and Business Media LLC. doi: 10.1038/s41929-021-00613-1. Li, X., He, Y., Cheng, S., Li, B., Zeng, Y., Xie, Z., Meng, Q., Ma, L., Kisslinger, K., Tong, X., Hwang, S., Yao, S., Li, C., Qiao, Z., Shan, C., Zhu, Y., Xie, J., Wang, G., Wu, G., & Su, D. (2021). Atomic Structure Evolution of Pt-Co Binary Catalysts: Single Metal Sites versus Intermetallic Nanocrystals. ADVANCED MATERIALS, 33(48), e2106371.Wiley. doi: 10.1002/adma.202106371. Liu, K., Zhang, S., Wu, D., Luo, L., Sun, X., Chen, X., Zakharov, D., Cheng, S., Zhu, Y., Yang, J.C., Wang, G., & Zhou, G. (2021). Effect of surface steps on chemical ordering in the subsurface of Cu(Au) solid solutions. PHYSICAL REVIEW B, 103(3).American Physical Society (APS). doi: 10.1103/PhysRevB.103.035401. Mohd Adli, N., Shan, W., Hwang, S., Samarakoon, W., Karakalos, S., Li, Y., Cullen, D.A., Su, D., Feng, Z., Wang, G., & Wu, G. (2021). Engineering Atomically Dispersed FeN4 Active Sites for CO2 Electroreduction. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 60(2), 1022-1032.Wiley. doi: 10.1002/anie.202012329. Qiao, Z., Wang, C., Li, C., Zeng, Y., Hwang, S., Li, B., Karakalos, S., Park, J., Kropf, A.J., Wegener, E.C., Gong, Q., Xu, H., Wang, G., Myers, D.J., Xie, J., Spendelow, J.S., & Wu, G. (2021). Atomically dispersed single iron sites for promoting Pt and Pt3Co fuel cell catalysts: performance and durability improvements. ENERGY & ENVIRONMENTAL SCIENCE, 14(9), 4948-4960.Royal Society of Chemistry (RSC). doi: 10.1039/d1ee01675j. Shan, W., & Wang, G. (2021). Enhancing Catalytic Properties of Iron- and Nitrogen-Doped Carbon for Nitrogen Reduction through Structural Distortion: A Density Functional Theory Study. JOURNAL OF PHYSICAL CHEMISTRY C, 125(29), 16004-16012.American Chemical Society (ACS). doi: 10.1021/acs.jpcc.1c04510. Stecker, C., Liu, Z., Hieulle, J., Zhang, S., Ono, L.K., Wang, G., & Qi, Y. (2021). Atomic Scale Investigation of the CuPc-MAPbX3 Interface and the Effect of Non-Stoichiometric Perovskite Films on Interfacial Structures. ACS NANO, 15(9), 14813-14821.American Chemical Society (ACS). doi: 10.1021/acsnano.1c04867. Xie, H., Liu, Y., Li, N., Li, B., Kline, D.J., Yao, Y., Zachariah, M.R., Wang, G., Su, D., Wang, C., & Hu, L. (2021). High-temperature-pulse synthesis of ultrathin-graphene-coated metal nanoparticles. Nano Energy, 80, 105536.Elsevier BV. doi: 10.1016/j.nanoen.2020.105536. Chen, M., Li, X., Yang, F., Li, B., Stracensky, T., Karakalos, S., Mukerjee, S., Jia, Q., Su, D., Wang, G., Wu, G., & Xu, H. (2020). Atomically Dispersed MnN4 Catalysts via Environmentally Benign Aqueous Synthesis for Oxygen Reduction: Mechanistic Understanding of Activity and Stability Improvements. ACS CATALYSIS, 10(18), 10523-10534.American Chemical Society (ACS). doi: 10.1021/acscatal.0c02490. He, Y., Guo, H., Hwang, S., Yang, X., He, Z., Braaten, J., Karakalos, S., Shan, W., Wang, M., Zhou, H., Feng, Z., More, K.L., Wang, G., Su, D., Cullen, D.A., Fei, L., Litster, S., & Wu, G. (2020). Single Cobalt Sites Dispersed in Hierarchically Porous Nanofiber Networks for Durable and High-Power PGM-Free Cathodes in Fuel Cells. ADVANCED MATERIALS, 32(46), e2003577.Wiley. doi: 10.1002/adma.202003577. Holby, E.F., Wang, G., & Zelenay, P. (2020). Acid Stability and Demetalation of PGM-Free ORR Electrocatalyst Structures from Density Functional Theory: A Model for "Single-Atom Catalyst" Dissolution. ACS CATALYSIS, 10(24), 14527-14539.American Chemical Society (ACS). doi: 10.1021/acscatal.0c02856. Mukherjee, S., Yang, X., Shan, W., Samarakoon, W., Karakalos, S., Cullen, D.A., More, K., Wang, M., Feng, Z., Wang, G., & Wu, G. (2020). Atomically Dispersed Single Ni Site Catalysts for Nitrogen Reduction toward Electrochemical Ammonia Synthesis Using N2 and H2O. SMALL METHODS, 4(6).Wiley. doi: 10.1002/smtd.201900821. Pan, F., Li, B., Sarnello, E., Fei, Y., Feng, X., Gang, Y., Xiang, X., Fang, L., Li, T., Hu, Y.H., Wang, G., & Li, Y. (2020). Pore-Edge Tailoring of Single-Atom Iron-Nitrogen Sites on Graphene for Enhanced CO2 Reduction. ACS CATALYSIS, 10(19), 10803-10811.American Chemical Society (ACS). doi: 10.1021/acscatal.0c02499. Pan, F., Li, B., Sarnello, E., Fei, Y., Gang, Y., Xiang, X., Du, Z., Zhang, P., Wang, G., Nguyen, H.T., Li, T., Hu, Y.H., Zhou, H.C., & Li, Y. (2020). Atomically Dispersed Iron-Nitrogen Sites on Hierarchically Mesoporous Carbon Nanotube and Graphene Nanoribbon Networks for CO2 Reduction. ACS NANO, 14(5), 5506-5516.American Chemical Society (ACS). doi: 10.1021/acsnano.9b09658. Pan, F., Li, B., Sarnello, E., Hwang, S., Gang, Y., Feng, X., Xiang, X., Adli, N.M., Li, T., Su, D., Wu, G., Wang, G., & Li, Y. (2020). Boosting CO2 reduction on Fe-N-C with sulfur incorporation: Synergistic electronic and structural engineering. NANO ENERGY, 68, 104384.Elsevier BV. doi: 10.1016/j.nanoen.2019.104384. Qiao, Y., Liu, Y., Liu, Y., Dong, Q., Zhong, G., Wang, X., Liu, Z., Wang, X., He, S., Zhou, W., Wang, G., Wang, C., & Hu, L. (2020). Thermal Radiation Synthesis of Ultrafine Platinum Nanoclusters toward Methanol Oxidation. SMALL METHODS, 4(9).Wiley. doi: 10.1002/smtd.202000265. Sun, X., Zhu, W., Wu, D., Liu, Z., Chen, X., Yuan, L., Wang, G., Sharma, R., & Zhou, G. (2020). Atomic-Scale Mechanism of Unidirectional Oxide Growth. ADVANCED FUNCTIONAL MATERIALS, 30(4).Wiley. doi: 10.1002/adfm.201906504. Xie, X., He, C., Li, B., He, Y., Cullen, D.A., Wegener, E.C., Kropf, A.J., Martinez, U., Cheng, Y., Engelhard, M.H., Bowden, M.E., Song, M., Lemmon, T., Li, X.S., Nie, Z., Liu, J., Myers, D.J., Zelenay, P., Wang, G., Wu, G., Ramani, V., & Shao, Y. (2020). Performance enhancement and degradation mechanism identification of a single-atom Co-N-C catalyst for proton exchange membrane fuel cells. NATURE CATALYSIS, 3(12), 1044-1054.Springer Science and Business Media LLC. doi: 10.1038/s41929-020-00546-1. Xu, Z., Zhou, Z., Li, B., Wang, G., & Leu, P.W. (2020). Identification of Efficient Active Sites in Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction Reaction. JOURNAL OF PHYSICAL CHEMISTRY C, 124(16), 8689-8696.American Chemical Society (ACS). doi: 10.1021/acs.jpcc.9b11090. Yang, C., Ko, B.H., Hwang, S., Liu, Z., Yao, Y., Luc, W., Cui, M., Malkani, A.S., Li, T., Wang, X., Dai, J., Xu, B., Wang, G., Su, D., Jiao, F., & Hu, L. (2020). Overcoming immiscibility toward bimetallic catalyst library. Sci Adv, 6(17), eaaz6844.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.aaz6844. Yao, Y., Liu, Z., Xie, P., Huang, Z., Li, T., Morris, D., Finfrock, Z., Zhou, J., Jiao, M., Gao, J., Mao, Y., Miao, J.J., Zhang, P., Shahbazian-Yassar, R., Wang, C., Wang, G., & Hu, L. (2020). Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts. SCIENCE ADVANCES, 6(11), eaaz0510.American Association for the Advancement of Science (AAAS). doi: 10.1126/sciadv.aaz0510. Zeng, Y., Priest, C., Wang, G., & Wu, G. (2020). Restoring the Nitrogen Cycle by Electrochemical Reduction of Nitrate: Progress and Prospects. SMALL METHODS, 4(12).Wiley. doi: 10.1002/smtd.202000672. Zheng, Y., Liu, Z., Lei, Y., Zhang, C., Chen, H., Wang, G., & Yang, Z.G. (2020). First-Principles Calculated Structures and Carbon Binding Energies of Σ11 {10(1)over-bar1}/{10(1)over-bar(1)over-bar} Tilt Grain Boundaries in Corundum Structured Metal Oxides. OXIDATION OF METALS, 94(1-2), 37-49.Springer Science and Business Media LLC. doi: 10.1007/s11085-020-09977-4. Zou, L., Cao, P., Lei, Y., Zakharov, D., Sun, X., House, S.D., Luo, L., Li, J., Yang, Y., Yin, Q., Chen, X., Li, C., Qin, H., Stach, E.A., Yang, J.C., Wang, G., & Zhou, G. (2020). Atomic-scale phase separation induced clustering of solute atoms. NATURE COMMUNICATIONS, 11(1), 3934.Springer Science and Business Media LLC. doi: 10.1038/s41467-020-17826-w. Zou, L., He, Y., Liu, Z., Jia, H., Zhu, J., Zheng, J., Wang, G., Li, X., Xiao, J., Liu, J., Zhang, J.G., Chen, G., & Wang, C. (2020). Unlocking the passivation nature of the cathode-air interfacial reactions in lithium ion batteries. NATURE COMMUNICATIONS, 11(1), 3204.Springer Science and Business Media LLC. doi: 10.1038/s41467-020-17050-6.

推荐链接
down
wechat
bug