当前位置: X-MOL首页全球导师 国内导师 › 程青

个人简介

教育经历 2013年09月-2018年12月厦门大学(硕博连读) 工作经历 2019年01月-2021年01月美国伊利诺伊理工大学-访问助理教授 2021年01月-2022年12月美国普渡大学-访问助理教授 2023年03月-至今 同济大学 科研项目 相场模型的高精度算法设计及应用,重大研究计划,国家自然科学基金委员会,200万元,2017-01-01至2019-12-31,结题, 参与 多相复杂材料的相场模型,国际(地区)合作与交流项目,国家自然科学基金委员会,166万元,2017-01-01至2019-12-31,结题, 参与 Efficient and accurate structure preserving schemes for complex nonlinear systems, Disciplinary Research Program,美国空军科学研究基金(AFOSR), 246万元,2020-09至2023-09,在研, 参与 Design and Analysis of Highly Efficient Algorithms for Complex Nonlinear Systems, Disciplinary Research program,美国自然科学基金(National Science Foundation),190万元,2020-08至2023-07,在研, 参与 Multi-Scale Modeling and Numerical Methods for Charge Transport in Ion Channels, Disciplinary Research Program,美国自然科学基金(National Science Foundation),101万元,2020-08至2023-07, 在研, 参与 Topics in Complex Fluids and Biophysiology: the Energetic Variational Approaches, Disciplinary Research Program,美国自然科学基金(National Science Foundation),260万元,2017-09至2021-06,结题, 参与

研究领域

偏微分方程数值解、谱方法、计算流体力学、计算生物学和计算材料科学等

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Qing Cheng, Xiaofeng Yang and Jie Shen* (July 2017) Efficient and accurate numerical schemes for a hydro-dynamically coupled phase field diblock copolymer model. Journal of Computational Physics(SCI二区-TOP期刊),Volume 341, pp.44-60. Qing Cheng, Xiaofeng Yang and Jie Shen*(March 2019)Highly efficient and accurate numerical schemes for the epitaxial thin film growth models by using the SAV approach. Journal of Scientific Computing(SCI二区), (ESI高被引文章), pp.1467-1487. Qing Chengand Jie Shen*(November 2018)Multiple scalar auxiliary variable (MSAV) approach and its ap- plication to the phase field vesicle membrane model. SIAM Journal on Scientific Computing(SCI二区-Top期刊), (ESI高被引文章), pp.A3982-A4006. Qing Cheng, Chun Liu and Jie Shen* (August 2020)A new Lagrange multiplier approach for gradient flows. Computer Methods in Applied Mechanics and Engineering(SCI一区-Top期刊), Volume 367. Qing Cheng, Chun Liu and Jie Shen* (October 2020)A new interface capturing method for Allen-Cahn type equations based on a flow dynamic approach in Lagrangian coordinates, I. One- dimensional case. Journal of Computational Physics(SCI二区-Top期刊), Volume 419. Qing Chengand Jie Shen* (August 2020)Global constraints preserving SAV schemes for gradient flows. SIAM Journal on Scientific Computing(SCI二区-Top期刊),Volume 42, Issue 4, pp.A2489-A2513. Qing Cheng*, Chun Liu and Jie Shen (March 2021)Generalized SAV approaches for gradient systems. Journal of Computation and Applied mathematics(SCI二区-Top期刊), Volume 394, Issue 1. Zhenlin Guo,Qing Cheng*, Ping Lin, Chun Liu and John Lowengrub (September 2021)Second order approximation for quasi-incompressiable Navier-Stokes Cahn-Hilliard equation with variable density and viscosity. Journal of Computational Physics(SCI二区-Top期刊), Volume 448. Qing Cheng*, Poruya Delafouz, Jie Liang, Chun Liu and Jie Shen (January 2022)Modeling and simulations of nuclear architecture reorganization process using a phase field approach. Journal of Computational Physics(SCI二区-Top期刊), Volume 449. Qing Chengand Cheng Wang* (December 2021)Error Estimate of a Second Order Accurate Scalar Auxiliary Variable (SAV) Numerical Method for the Epitaxial Thin Film Equation, Advances in Applied Mathematics and Mechanics. Advances in Applied Mathematics and Mechanics, Volume 13, Issue 6, pp.1318-1354. Qing Cheng*and Jie Shen (March 2022)A new Lagrange multiplier approach for constructing structure preserving schemes, I. positivity preserving.Computer Methods in Applied Mechanics and Engineering(SCI一区-Top期刊),Volume391. Qing Cheng*and Jie Shen (May 2022) A new Lagrange multiplier approach for constructing structure preserving schemes, II. bound-preserving. SIAM Journal on Numerical Analysis(SCI二区-Top期刊), Volume 60, Issue 3, pp.970-998. Qing Cheng*and Jie Shen (May 2023)Length Preserving Numerical Schemes for Landau–Lifshitz Equation Based on Lagrange Multiplier Approaches,SIAM Journal on Scientific Computing(SCI二区-Top期刊),Volume 45, Issue 2, pp.A530-A553.

推荐链接
down
wechat
bug