当前位置: X-MOL首页全球导师 国内导师 › 姜洪源

个人简介

工学博士,哈工大金属橡胶技术研究所所长,哈尔滨工业大学—萨玛拉国立航空航天大学(俄)振动防护联合实验室负责人,《机械设计基础》课程教学 带头人。承担完成国家自然科学基金(14项)、国家科委及省部级重点攻关等多项研究课题。获得国家自然科学基金优秀完成奖1项,省部委科学技术进步二等奖2项、三等奖2项。授权发明专利15项,实用新型专利7项。发表学术论文200余篇。 工作经历 1982年7月至1987年7月 哈工大机械设计教研室助教 1987年8月至1992年1月 哈工大机械工程系讲师 1992年2月至1998年7月 哈工大机械工程系副教授,1993年起为硕士导师 1998年8月至2005年4月 哈工大机电工程学院机械设计系教授 2005年至目前 哈工大机电工程学院机械设计系教授/博士生导师 教育经历 1982年7月本科毕业于哈工大机械工程系,获工学学士学位 1992年3月哈工大机械工程系机械学学科,获工学硕士学位 2005年1月于哈工大机械设计及理论学科,获工学博士学位 2002年7月~2002年10月在英国做高级访问学者

研究领域

1、金属橡胶技术的理论及应用研究 金属橡胶技术是军民两用关键技术,它起源于俄罗斯萨玛拉国立航空航天大学。金属橡胶技术的研究旨在以金属丝为原材料,开发研制一种弹性多孔材料,利用该材料可以制备出具有特殊性能金属橡胶构件,金属橡胶构件以金属丝为原材料,不含有任何普通橡胶,但却具有橡胶一样的弹性和多孔性,特别适合于解决高低温、大温差、高压、高真空、强辐射及剧烈振动等环境下的阻尼减振、过滤、密封、节流及吸音降噪等疑难问题,是航空航天及民品特殊工况下普通橡胶的最佳替代品。 哈尔滨工业大学金属橡胶技术研究所自1998年开始对金属橡胶技术进行系统研究,是我国最早从事金属橡胶技术研究的科研机构之一。研究所与俄罗斯萨玛拉国立航空航天大学的相关专家建立有良好的科研合作关系,成立有“哈尔滨工业大学-萨玛拉国立航空航天大学(俄)振动防护联合实验室”,近几年来,中外专家学者成功实现互访合作研究70余人次。承担完成国家自然科学基金项目、省部级重点攻关项目及产业化基金项目等多项课题,结合用户需求开发研制的金属橡胶隔振器和金属橡胶密封件,在不同领域中应用获得了成功。对金属橡胶基础理论及应用技术的研究处于国内领先地位,多项研究成果填补国内空白,替代进口产品成功应用于我国关键领域。研究成果获国家自然科学基金项目完成优秀奖1项、黑龙江省科学技术二等奖1项和国防科工委科学技术三等奖各2项,。拥有相关发明专利5项、实用新型专利6项和俄罗斯发明专利1项。培养金属橡胶技术研究领域博士9人,硕士40余人,发表相关学术论文100余篇。 2、微纳流体操控相关技术研究 微/纳流控芯片是把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作单元集成到一块微米尺度的芯片上,自动完成分析全过程。它以芯片为操作平台,同时以分析化学为基础,以微机电加工技术为依托,以微管道网络为结构特征,以生命科学为目前主要应用对象,是当前微全分析系统领域发展的重点。我们针对微/纳流控中的机械学、力学方面的一些基础科学问题展开了深入研究,同时也对微/纳流控技术在新型机械加工、深海测试、生物免疫检测等方面进行了拓展。 本实验室自2003年起组织团队从事相关技术的研究,十年来,与美国哈佛大学、美国麻省理工学院、美国加州大学、美国哥伦比亚大学、美国宾夕法尼亚大学、美国田纳西大学、英国南安普顿大学、西班牙塞维利亚大学的相关专家建立了良好的国际合作关系,成功实现互访合作研究10余次,在国家CSC项目的资助下,联合培养博士研究生10人,获得国家自然科学基金项目7项、国家重点实验室基金项目2项、教育部博士点新教师基金项目1项。获得省自然科学二等奖1项;国家发明专利11项,发表相关学术论文100余篇,其中SCI论文70余篇,论文影响因子总和超过120。目前,在该研究领域的研究成果处于国内领先地位。 3、康复工程及功能性电刺激(FES)理论和控制技术研究 由于车祸、竞技运动、从高处跌落受伤或其它的不可预料的外部伤害而造成的脊柱损伤可能会导致下肢的完全瘫痪,也就是所谓的“截瘫”。由于下肢包含身体重要的肌肉群,瘫痪后会对呼吸、循环系统及心脏造成长期负面的影响。并且,脊髓损伤还会给患者带来如压痛、骨质疏松和骨骼肌萎缩等严重的并发症。从生活方面看,脊髓损伤(Spinal Cord Injury, SCI)不仅给患者带来的是生理上的更是心理上的创伤。并且,对于脊髓损伤患者的护理占用了很大的社会资源,这不仅对患者的家庭也对社会造成了严重的负担。所以脊髓损伤患者的康复一直是世界各个医疗机构和康复机构研究的热点。 康复工程及功能性电刺激(FES)技术是机械、控制及临床医学相互交叉领域的前沿技术,该技术的研究旨在利用专用康复机械装置和电刺激的方法促进周围神经再生,使截瘫患者的残疾肢体实现重新自主运动,减缓肌肉萎缩及心肺功能衰竭,逐步实现运动功能康复。研究采用主动训练模式,通过外部方式使肌肉能够主动收缩进行训练,此种方式不仅可以防止肌肉继续萎缩,还能够使肌肉做有氧运动,增加肌肉力量,同时还能够改善身体的其它机能。 在该领域的研究与英国格拉斯哥大学、斯洛文尼亚卢布尔雅那大学和黑龙江省康复医院具有良好的科研合作关系,共同致力于专用康复运动器械的开发、控制方法及应用软件的设计、临床应用实验等开创性的研究。承担完成国家自然科学基金项目、中国与斯洛文尼亚政府间国际合作项目(2项)和哈工大跨学科基金资助项目等多项课题,联合培养博士2人,硕士10余人,获得发明专利1项,发表相关学术论文20余篇。 4、现代机械设计及工程技术研究 带传动是机械传动的重要组成部分,在机械工程中具有非常广泛的应用。按照工作原理不同,带传动分为摩擦型带传动和啮合型带传动(即同步带传动),摩擦型带传动通过带与带轮接触面间摩擦力传递运动和动力,启动平稳,具有过载保护作用。同步带传动通过带齿与轮齿啮合传递运动和动力,传动比准确,兼有带传动、链传动和齿轮传动的共同特点。带传动适合于大中心距传递,在输入输出相距较远的结构中,带传动表现出的优良特性是其它传动形式所不可比拟的。 面对机械设备不断提出的高效节能、绿色环保、长寿命、低噪声以及低成本的苛刻需求,改进现有带传动形式中存在的不足,完善其相应的标准和质量检测体系,挑战传统制带工艺方法,将绿色环保的新材料应用于传动带的生产中,开发研制带传动的新形式,设计新的同步带齿形,揭示其工作机理,确定其主要影响因素,结合工程实际开展深入的理论研究和实验研究,一直是我们关注的研究重点和进行的主要工作。 本实验室是全国高校对带传动技术进行系统研究最持久的团队之一,三十年来,对普通V带传动、联组V带传动、窄V带传动、新型平顶圆弧齿同步带传动、斜齿同步带传动以及人字齿同步带传动等进行了深入的系统研究,研究成果处于国内领先水平。开发研制了多台套带传动专用实验设备,参与了多项带传动国家标准的制修订。研究工作中与日本大阪工业大学、日本阪东株式会社、青岛产品质量检测所以及国内多家传动带生产厂建立了良好的合作关系。完成国家自然科学基金项目3项,培养研究生20余人,发表学术论文50余篇。

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Sun, H.; Ren, Y.; Tao, Y.; Jiang, T.; Jiang, H. Three-Fluid Sequential Micromixing-Assisted Nanoparticle Synthesis Utilizing Alternating Current Electrothermal Flow. Industrial & Engineering Chemistry Research 2020, 59 (27), 12514-12524.(SCI: 影响因子3.573) Xue, R.; Liu, W.; Jiang, T.; Song, C.; Jiang, H.; Ren, Y. Pumping of Ionic Liquids by Liquid Metal‐Enabled Electrocapillary Flow under DC‐Biased AC Forcing. Advanced Materials Interfaces 2020.(SCI: 影响因子4.948) Hou, L.; Ren, Y.; Liu, W.; Deng, X.; Chen, X.; Jiang, T.; Wu, G.; Jiang, H. Eccentric magnetic microcapsule for on-demand transportation, release, and evacuation in microfabrication fluidic networks. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020, 599.(SCI: 影响因子3.131) Chen, X.; Ren, Y.; Jiang, T.; Hou, L.; Jiang, H. High-throughput and Multimodal Separation of Microbeads Using Cyclical Induced-charge Electro-osmotic Vortices and Its Application in Size Fractionation of Crumpled Graphene Oxide Balls. Applied Materials Today 2020, 19.(SCI: 影响因子8.352) Sun, H.; Ren, Y.; Tao, Y.; Liu, W.; Jiang, T.; Jiang, H. Combined alternating current electrothermal and dielectrophoresis-induced tunable patterning to actuate on-chip microreactions and switching at a floating electrode. Sensors and Actuators B: Chemical 2020, 304. (SCI: 影响因子7.1) Zhang, K.; Ren, Y.; Hou, L.; Jiang, T.; Jiang, H. Flexible Particle Focusing and Switching in Continuous Flow via Controllable Thermal Buoyancy Convection. Analytical chemistry 2020, 92 (3), 2778-2786.(SCI: 影响因子6.785) Zhang, K.; Ren, Y.; Hou, L.; Tao, Y.; Liu, W.; Jiang, T.; Jiang, H. Continuous microfluidic mixing and the highly controlled nanoparticle synthesis using direct current-induced thermal buoyancy convection. Microfluidics and Nanofluidics 2020.(SCI: 影响因子2.489) Wu, Y.; Ren, Y.; Han, L.; Yan, Y.; Jiang, H. Three-dimensional paper based platform for automatically running multiple assays in a single step. Talanta 2019. (SCI: 影响因子4.916) Zhang, K.; Ren, Y.; Tao, Y.; Liu, W.; Jiang, T.; Jiang, H. Efficient Micro/Nanoparticle Concentration using Direct Current Induced Thermal Buoyancy Convection for Multiple Liquid Media. Analytical chemistry 2019. (SCI: 影响因子6.35) Feng, X.; Ren, Y.; Sun, H.; Chen, X.; Zhang, K.; Jia, Y.; Hou, L.; Xiao, M.; Jiang, H. Effect of vortex on mass transport and mixing in microcapillary channels. Chemical Engineering Journal 2019, 362, 442-452. (SCI: 影响因子8.355) Chen, X.; Ren, Y.; Hou, L.; Feng, X.; Jiang, T.; Jiang, H. Induced Charge Electro-osmotic Particle Separation. Nanoscale 2019. (SCI: 影响因子6.97) Jia, Y.; Huang, R.; Lan, Y.; Ren, Y.; Jiang, H.; Lee, D. Reversible Aggregation and Dispersion of Particles at a Liquid-Liquid Interface Using Space Charge Injection. Advanced Materials Interfaces 2019, 6 (5), 1801920. (SCI: 影响因子4.713) Hu, Q.; Ren, Y.; Zheng, X.; Hou, L.; Jiang, T.; Liu, W.; Tao, Y.; Jiang, H. A micro-needle induced strategy for preparation of monodisperse liquid metal droplets in glass capillary microfluidics. Microfluidics and Nanofluidics 2019, 23 (1). (SCI: 影响因子2.384) Jiang, T.; Tao, Y.; Jiang, H.; Liu, W.; Hu, Y.; Tang, D. An Experimental Study of 3D Electrode-Facilitated Particle Traffic Flow-Focusing Driven by Induced-Charge Electroosmosis. Micromachines (Basel) 2019, 10 (2). (SCI: 影响因子2.222) Sun, H.; Ren, Y.; Hou, L.; Tao, Y.; Liu, W.; Jiang, T.; Jiang, H. Continuous Particle Trapping, Switching, and Sorting Utilizing a Combination of Dielectrophoresis and Alternating Current Electrothermal Flow. Analytical chemistry 2019, 91 (9), 5729-5738. (SCI: 影响因子6.35) Feng, X.; Ren, Y.; Hou, L.; Tao, Y.; Jiang, T.; Li, W.; Jiang, H. Tri-fluid mixing in a microchannel for nanoparticle synthesis. Lab on a chip 2019.(SCI: 影响因子6.914) Chen, X.; Ren, Y.; Hou, L.; Feng, X.; Jiang, T.; Jiang, H. Microparticle separation using asymmetrical induced-charge electro-osmotic vortices on an arc-edge-based floating electrode. The Analyst 2019, 144 (17), 5150-5163.(SCI: 影响因子4.019) Xiaokang Deng, Yukun Ren, Likai Hou, Weiyu liu, Tianyi Jiang, Hongyuan Jiang. Compound-Droplet-Pairs-Filled Hydrogel Microfiber for Electric-Field-Induced Selective Release. Small 2019. (SCI: 影响因子10.856) Zhang, K.; Ren, Y.; Tao, Y.; Deng, X.; Liu, W.; Jiang, T.; Jiang, H. Efficient particle and droplet manipulation utilizing the combined thermal buoyancy convection and temperature-enhanced rotating induced-charge electroosmotic flow. Analytica chimica acta 2019. (SCI: 影响因子5.256) Ren, Y.; Song, C.; Liu, W.; Jiang, T.; Song, J.; Wu, Q.; Jiang, H. On hybrid electroosmotic kinetics for field-effect-reconfigurable nanoparticle trapping in a four-terminal spiral microelectrode array. Electrophoresis 2018. (SCI: 影响因子2.569) Jiang, T.; Ren, Y.; Liu, W.; Tang, D.; Tao, Y.; Xue, R.; Jiang, H. Dielectrophoretic separation with a floating-electrode array embedded in microfabricated fluidic networks. Physics of Fluids 2018, 30 (11), 112003. (SCI: 影响因子2.279) Zhang, K.; Ren, Y.; Hou, L.; Feng, X.; Chen, X.; Jiang, H. An efficient micromixer actuated by induced-charge electroosmosis using asymmetrical floating electrodes. Microfluidics and Nanofluidics 2018, 22 (11). (SCI: 影响因子2.384) Deng, X.; Ren, Y.; Hou, L.; Liu, W.; Jia, Y.; Jiang, H. Electric Field-Induced Cutting of Hydrogel Microfibers with Precise Length Control for Micromotors and Building Blocks. ACS applied materials & interfaces 2018, 10 (46), 40228-40237. (SCI: 影响因子8.097) Sun, H.; Ren, Y.; Liu, W.; Feng, X.; Hou, L.; Tao, Y.; Jiang, H. Flexible continuous particle-beam switching via external-field-reconfigurable asymmetric induced-charge electroosmosis. Analytical chemistry 2018. (SCI: 影响因子6.35) Wu, Y.; Ren, Y.; Tao, Y.; Hou, L.; Jiang, H. High-Throughput Separation, Trapping, and Manipulation of Single Cells and Particles by Combined Dielectrophoresis at a Bipolar Electrode Array. Analytical chemistry 2018, 90 (19), 11461-11469. (SCI: 影响因子6.35) Ren, Y.; Liu, X.; Liu, W.; Tao, Y.; Jia, Y.; Hou, L.; Li, W.; Jiang, H. Flexible particle flow-focusing in microchannel driven by droplet-directed induced-charge electroosmosis. Electrophoresis 2018, 39 (4), 597-607. (SCI: 影响因子2.569) Jia, Y.; Ren, Y.; Hou, L.; Liu, W.; Jiang, T.; Deng, X.; Tao, Y.; Jiang, H. Electrically controlled rapid release of actives encapsulated in double-emulsion droplets. Lab on a chip 2018, 18 (7), 1121-1129. (SCI: 影响因子6.914) Jia, Y.; Ren, Y.; Hou, L.; Liu, W.; Deng, X.; Jiang, H. Sequential Coalescence Enabled Two-Step Microreactions in Triple-Core Double-Emulsion Droplets Triggered by an Electric Field. Small 2017, 13 (46), 1702188. (SCI: 影响因子10.856) Chen, X.; Ren, Y.; Liu, W.; Feng, X.; Jia, Y.; Tao, Y.; Jiang, H. A Simplified Microfluidic Device for Particle Separation with Two Consecutive Steps: Induced Charge Electro-osmotic Prefocusing and Dielectrophoretic Separation. Analytical chemistry 2017, 89 (17), 9583-9592. (SCI: 影响因子6.35) Feng, X.; Fu, Z.; Kaledhonkar, S.; Jia, Y.; Shah, B.; Jin, A.; Liu, Z.; Sun, M.; Chen, B.; Grassucci, R. A.; Ren, Y.; Jiang, H.; Frank, J.; Lin, Q. A Fast and Effective Microfluidic Spraying-Plunging Method for High-Resolution Single-Particle Cryo-EM. Structure 2017, 25 (4), 663-670 e3. (SCI: 影响因子4.907) Hou, L.; Ren, Y.; Jia, Y.; Deng, X.; Liu, W.; Feng, X.; Jiang, H. Continuously Electrotriggered Core Coalescence of Double-Emulsion Drops for Microreactions. ACS applied materials & interfaces 2017, 9 (14), 12282-12289. (SCI: 影响因子8.097) Hou, L.; Ren, Y.; Jia, Y.; Deng, X.; Tang, Z.; Tao, Y.; Jiang, H. A simple microfluidic method for one-step encapsulation of reagents with varying concentrations in double emulsion drops for nanoliter-scale reactions and analyses. Analytical Methods 2017, 9 (17), 2511-2516. (SCI: 影响因子2.073) Li, Y.; Ren, Y.; Liu, W.; Chen, X.; Tao, Y.; Jiang, H. On controlling the flow behavior driven by induction electrohydrodynamics in microfluidic channels. Electrophoresis 2017, 38 (7), 983-995. (SCI: 影响因子2.569) Hou, L.; Ren, Y.; Jia, Y.; Chen, X.; Deng, X.; Tang, Z.; Hu, Q.; Tao, Y.; Jiang, H. Osmolarity-controlled swelling behaviors of dual-cored double-emulsion drops. Microfluidics and Nanofluidics 2017, 21 (4). (SCI: 影响因子2.384) Hu, Q.; Ren, Y.; Liu, W.; Chen, X.; Tao, Y.; Jiang, H. Fluid Flow and Mixing Induced by AC Continuous Electrowetting of Liquid Metal Droplet. Micromachines 2017, 8 (4), 119. (SCI: 影响因子2.222) Hu, Q.; Ren, Y.; Liu, W.; Tao, Y.; Jiang, H. Simulation Analysis of Improving Microfluidic Heterogeneous Immunoassay Using Induced Charge Electroosmosis on a Floating Gate. Micromachines (Basel) 2017, 8 (7). (SCI: 影响因子2.222) Wu, Y.; Ren, Y.; Tao, Y.; Jiang, H. Fluid pumping and cells separation by DC-biased traveling wave electroosmosis and dielectrophoresis. Microfluidics and Nanofluidics 2017, 21 (3). (SCI: 影响因子2.384) Wu, Y.; Ren, Y.; Jiang, H. Enhanced model-based design of a high-throughput three dimensional micromixer driven by alternating-current electrothermal flow. Electrophoresis 2017, 38 (2), 258-269. (SCI: 影响因子2.569) Wu, Y.; Ren, Y.; Tao, Y.; Hou, L.; Hu, Q.; Jiang, H. A novel micromixer based on the alternating current-flow field effect transistor. Lab on a chip 2016, 17 (1), 186-197. (SCI: 影响因子6.914) Wu, Y.; Ren, Y.; Tao, Y.; Hou, L.; Jiang, H. Large-Scale Single Particle and Cell Trapping based on Rotating Electric Field Induced-Charge Electroosmosis. Analytical chemistry 2016, 88 (23), 11791-11798. (SCI: 影响因子6.35) Lang, Q.; Ren, Y.; Hobson, D.; Tao, Y.; Hou, L.; Jia, Y.; Hu, Q.; Liu, J.; Zhao, X.; Jiang, H. In-plane microvortices micromixer-based AC electrothermal for testing drug induced death of tumor cells. Biomicrofluidics 2016, 10 (6), 064102. (SCI: 影响因子2.571) Jia, Y.; Ren, Y.; Liu, W.; Hou, L.; Tao, Y.; Hu, Q.; Jiang, H. Electrocoalescence of paired droplets encapsulated in double-emulsion drops. Lab on a chip 2016, 16 (22), 4313-4318. (SCI: 影响因子6.914) Ren, Y.; Liu, W.; Liu, J.; Tao, Y.; Guo, Y.; Jiang, H. Particle rotational trapping on a floating electrode by rotating induced-charge electroosmosis. Biomicrofluidics 2016, 10 (5), 054103. (SCI: 影响因子2.571) Liu, W.; Shao, J.; Ren, Y.; Wu, Y.; Wang, C.; Ding, H.; Jiang, H.; Ding, Y. Effects of discrete-electrode arrangement on traveling-wave electroosmotic pumping. Journal of Micromechanics and Microengineering 2016, 26 (9), 095003. (SCI: 影响因子1.888) Lang, Q.; Ren, Y.; Wu, Y.; Guo, Y.; Zhao, X.; Tao, Y.; Liu, J.; Zhao, H.; Lei, L.; Jiang, H. A multifunctional resealable perfusion chip for cell culture and tissue engineering. RSC Advances 2016, 6 (32), 27183-27190. (SCI: 影响因子2.936) Tao, Y.; Ren, Y.; Liu, W.; Wu, Y.; Jia, Y.; Lang, Q.; Jiang, H. Enhanced particle trapping performance of induced charge electroosmosis. Electrophoresis 2016, 37 (10), 1326-36. (SCI: 影响因子2.569) Guan, X.; Hou, L.; Ren, Y.; Deng, X.; Lang, Q.; Jia, Y.; Hu, Q.; Tao, Y.; Liu, J.; Jiang, H. A dual-core double emulsion platform for osmolarity-controlled microreactor triggered by coalescence of encapsulated droplets. Biomicrofluidics 2016, 10 (3), 034111. (SCI: 影响因子2.571) Liu, W.; Shao, J.; Ren, Y.; Liu, J.; Tao, Y.; Jiang, H.; Ding, Y. On utilizing alternating current-flow field effect transistor for flexibly manipulating particles in microfluidics and nanofluidics. Biomicrofluidics 2016, 10 (3), 034105. (SCI: 影响因子2.571) Ren, Y.; Liu, J.; Liu, W.; Lang, Q.; Tao, Y.; Hu, Q.; Hou, L.; Jiang, H. Scaled particle focusing in a microfluidic device with asymmetric electrodes utilizing induced-charge electroosmosis. Lab on a chip 2016, 16 (15), 2803-12. (SCI: 影响因子6.914) Yan, H.; Zhang, L.; Jiang, H.-Y.; Ulanov, A. M. Calculation of multi-layer plate damper under one-axial load. Chinese Physics B 2016, 25 (2), 024306.(SCI: 影响因子1.321) Yan, H.; Zhao, Y.; Liu, J.; Jiang, H. Analyses toward factors influencing sealing clearance of a metal rubber seal and derivation of a calculation formula. Chinese Journal of Aeronautics 2016, 29 (1), 292-296. (SCI: 影响因子1.614) Tao, Y.; Ren, Y.; Yan, H.; Jiang, H. Continuous separation of multiple size microparticles using alternating current dielectrophoresis in microfluidic device with acupuncture needle electrodes. Chinese Journal of Mechanical Engineering 2015, 29 (2), 325-331. Li, S.; Ren, Y.; Cui, H.; Yuan, Q.; Wu, J.; Eda, S.; Jiang, H. Alternating current electrokinetics enhanced in situ capacitive immunoassay. Electrophoresis 2015, 36 (3), 471-4. (SCI: 影响因子2.569) Jia, Y.; Ren, Y.; Jiang, H. Continuous dielectrophoretic particle separation using a microfluidic device with 3D electrodes and vaulted obstacles. Electrophoresis 2015, 36 (15), 1744-53. (SCI: 影响因子2.569) Jia, Y.; Ren, Y.; Jiang, H. Continuous-flow focusing of microparticles using induced-charge electroosmosis in a microfluidic device with 3D AgPDMS electrodes. RSC Advances 2015, 5 (82), 66602-66610. (SCI: 影响因子2.936) Ren, Y.; Liu, W.; Jia, Y.; Tao, Y.; Shao, J.; Ding, Y.; Jiang, H. Induced-charge electroosmotic trapping of particles. Lab on a chip 2015, 15 (10), 2181-91. (SCI: 影响因子6.914) Liu, W.; Shao, J.; Jia, Y.; Tao, Y.; Ding, Y.; Jiang, H.; Ren, Y. Trapping and chaining self-assembly of colloidal polystyrene particles over a floating electrode by using combined induced-charge electroosmosis and attractive dipole–dipole interactions. Soft matter 2015, 11 (41), 8105-8112. (SCI: 影响因子3.709) Lang, Q.; Wu, Y.; Ren, Y.; Tao, Y.; Lei, L.; Jiang, H. AC Electrothermal Circulatory Pumping Chip for Cell Culture. ACS applied materials & interfaces 2015, 7 (48), 26792-801. (SCI: 影响因子8.097)

学术兼职

中国机械工程学会机械传动委员会副主任委员 中国带传动专业技术委员会主任 全国带轮与带标准化技术委员会副主任委员 日本带传动恳话会海外会员 中国航空学会机械动力传输委员会委员 中国康复学会康复医学工程委员会委员 中国仪器仪表学会微纳器件与系统技术分会高级会员 哈尔滨市机械设计与传动学会主任

推荐链接
down
wechat
bug