近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Liu, J, Xu, L, Ji, Q, et al. A MXene-based light-driven actuator and motor with self-sustained oscillation for versatile applications[J]. Advanced Functional Materials. Accept. (通讯作者)
Yan Q, Ding R, Zheng H, et al. Bio‐inspired stimuli‐responsive Ti3C2Tx /PNIPAM anisotropic hydrogels for high‐performance actuators[J]. Advanced Functional Materials, 2023, 8:634.(通讯作者)
Liu Z, Wang G, Li P, et al. Gradient in-plane oriented porous carbon inspired by fabrication of toasts for elegant EMI shielding performance[J]. Carbon, 2023, 207:136–143.(通讯作者)
Liu Z, Xue F, Zhao X, et al. Anti-stacking synthesis of MXene-reduced graphene oxide sponges for aqueous zinc-ion hybrid supercapacitor with improved performance[J]. Journal of Materials Science & Technology, 2023, 154:22–29.(通讯作者)
Xu L, Zheng H, Xue F, et al. Bioinspired multi-stimulus responsive MXene-based soft actuator with self-sensing function and various biomimetic locomotion[J]. Chemical Engineering Journal, 2023, 463(25):142392.(通讯作者)
Ding R, Xiong J, Yan Q, et al. Achieving fast interfacial solar vapor generation and aqueous acid purification using Ti3C2Tx MXene/PANI non-woven fabrics[J]. Materials horizons, 2023.(通讯作者)
Ding R, Yan Q, Xue F, et al. Dual protective porous Ti3C2Tx MXene/polyimide composite film for thermal insulation and electromagnetic interference shielding[J]. Small, 2023:e2304946.(通讯作者)
Chen Z, Peng Q, Hu Y, et al. Dried bonito flakes-inspired moisture-responsive actuator with a gradient structure for smart devices[J]. Journal of Materials Science & Technology, 2023, 167:152–160.(通讯作者)
Liu Z, Ding R, Xue F, et al. MXene-reduced graphene oxide sponge-based solar evaporators with integrated water-thermal management by anisotropic design[J]. Communications Materials, 2023, 4(1):46552.(通讯作者)
Chen Z, Gao B, Li P, et al. Multistimuli-responsive actuators derived from natural materials for entirely biodegradable and programmable untethered soft robots[J]. ACS nano, 2023.(通讯作者)
Xiong J, Ding R, Liu Z, et al. High-strength, super-tough, and durable nacre-inspired MXene/heterocyclic aramid nanocomposite films for electromagnetic interference shielding and thermal management[J]. Chemical Engineering Journal, 2023, 474:145972.(通讯作者)
Ding R, Zheng H, Zhao X, et al. Skin inspired multifunctional crumpled Ti3C2Tx MXene/tissue composite film[J]. Composites Part A: Applied Science and Manufacturing, 2022, 158:106967.(通讯作者)
Xu L, Xue F, Zheng H, et al. An insect larvae inspired MXene-based jumping actuator with controllable motion powered by light[J]. Nano Energy, 2022, 103:107848.(通讯作者)
Li P, Zheng H, Zhao X, et al. Wide range pressure sensor construction based on tension-compression conversion and gradient stiffness design strategy[J]. Composites Part A: Applied Science and Manufacturing, 2022, 161(9):107082.(通讯作者)
Xue F, Peng Q, Liu Z, et al. 3D solvent-responsive actuator capable of directionally outputting thrust[J]. Cell Reports Physical Science, 2022, 3(12):101183.(通讯作者)
Xiong J, Zheng H, Ding R, et al. Multifunctional non-woven fabrics based on interfused MXene fibers[J]. Materials & Design, 2022, 223:111207.(通讯作者)
Meng R, Zhang T, Liu X, et al. Graphene oxide-assisted Co-sintering synthesis of carbon nanotubes with enhanced electromagnetic wave absorption performance[J]. Carbon, 2021, 185:186–197.
Xue F, Zheng H, Peng Q, et al. An ultra-broad-range pressure sensor based on a gradient stiffness design[J]. Materials Horizons, 2021, 8(8):2260–2272.(通讯作者)
Zhao Y, Xue F, Miao L, et al. Roles of twisting-compression operations on mechanical enhancement of carbon nanotube fibers[J]. Carbon, 2021, 172:41–49.(通讯作者)
Zhu Y, Zhao X, Peng Q, et al. Flame-retardant MXene/polyimide film with outstanding thermal and mechanical properties based on the secondary orientation strategy[J]. Nanoscale Advances, 2021, 3(19):5683–5693.(通讯作者)
Li Y, Ning W, Peng Q, et al. Superbroad-band actively tunable acoustic metamaterials driven from poly (ethylene terephthalate)/Carbon nanotube nanocomposite membranes[J]. Nano Research, 2021, 14(1):100–107.
Chen Q, Peng Q, Zhao X, et al. Grafting carbon nanotubes densely on carbon fibers by poly(propylene imine) for interfacial enhancement of carbon fiber composites[J]. Carbon, 2020, 158:704–710.(通讯作者)
Li P, Chen Q, Peng Q, et al. Paraffin/graphene sponge composite as a shape-stabilized phase change material for thermal energy storage[J]. Pigment & Resin Technology, 2020, 50(5):412–418.(通讯作者)
Li J, Yang S, Jiao P, et al. Three-dimensional macroassembly of hybrid C@CoFe nanoparticles/reduced graphene oxide nanosheets towards multifunctional foam[J]. Carbon, 2020, 157:427–436.
Wang C, Zhao Y, Zhang Y, et al. Partially unzipping carbon nanotubes: A route to synchronously improve fracture strength and toughness of nanocomposites inspired by pinning effect of screw[J]. Materials Today Communications, 2020, 25:101355.(通讯作者)
Xu L, Peng Q, Zhao X, et al. A photoactuator based on stiffness-variable carbon nanotube nanocomposite yarn[J]. ACS applied materials & interfaces, 2020, 12(36):40711–40718.(通讯作者)
Yuan Y, Xiong Y, Li J, et al. Large‐scale synthesis of hollow carbon fibers with ultra‐large diameter by thermally controlled pyrolysis[J]. Journal of the American Ceramic Society, 2020, 103(10):5629–5637.
Zhao X, Zhou M, Peng Q, et al. Mechanical properties improvement in highly and aligned dispersed graphene oxide/bismaleimide nanocomposites based on graphene oxide sponge[J]. Advanced Engineering Materials, 2020, 22(8):2000231.(通讯作者)
Zhu Y, Peng Q, Qin Y, et al. Graphene–carbon composite films as thermal management materials[J]. ACS Applied Nano Materials, 2020, 3(9):9076–9087.(通讯作者)
Li Y, Wang S, Peng Q, et al. Active control of graphene-based membrane-type acoustic metamaterials using a low voltage[J]. Nanoscale, 2019, 11(35):16384–16392.(通讯作者)
Li Y, Sun L, Xu F, et al. Electromagnetic and acoustic double-shielding graphene-based metastructures[J]. Nanoscale, 2019, 11(4):1692–1699.
Qin Y, Peng Q, Zhu Y, et al. Lightweight, mechanically flexible and thermally superinsulating rGO/polyimide nanocomposite foam with an anisotropic microstructure[J]. Nanoscale Advances, 2019, 1(12):4895–4903.(通讯作者)
Xu L, Peng Q, Zhu Y, et al. Artificial muscle with reversible and controllable deformation based on stiffness-variable carbon nanotube spring-like nanocomposite yarn[J]. Nanoscale, 2019, 11(17):8124–8132.(通讯作者)
Yang M, Yuan Y, Yin W, et al. Co/CoO@C nanocomposites with a hierarchical bowknot-like nanostructure for high performance broadband electromagnetic wave absorption[J]. Applied Surface Science, 2019, 469:607–616.
Zhao X, Xu L, Chen Q, et al. Highly conductive multifunctional rGO/CNT hybrid sponge for electromagnetic wave shielding and strain sensor[J]. Advanced Materials Technologies, 2019, 4(9):1900443.(通讯作者)
Xu F, Chen R, Lin Z, et al. Superflexible interconnected graphene network nanocomposites for high-performance electromagnetic interference shielding[J]. ACS omega, 2018, 3(3):3599–3607.(通讯作者)
Xu F, Chen R, Lin Z, et al. Variable densification of reduced graphene oxide foam into multifunctional high-performance graphene paper[J]. Journal of Materials Chemistry C, 2018, 6(45):12321–12328.(通讯作者)
Yuan Y, Yin W, Yang M, et al. Lightweight, flexible and strong core-shell non-woven fabrics covered by reduced graphene oxide for high-performance electromagnetic interference shielding[J]. Carbon, 2018, 130:59–68.
Li Y, Xu F, Lin Z, et al. Electrically and thermally conductive underwater acoustically absorptive graphene/rubber nanocomposites for multifunctional applications[J]. Nanoscale, 2017, 9(38):14476–14485.
Li J, Wu Y, Yang M, et al. Electrospun Fe2O3 nanotubes and Fe3O4 nanofibers by citric acid sol-gel method[J]. Journal of the American Ceramic Society, 2017, 100(12):5460–5470.
Li J, Wu Y, Cao J, et al. Excellent flexibility of high-temperature-treated SiO2-TiO2 hybrid fibres and their enhanced luminescence with Eu3%2B doping[J]. Ceramics International, 2017, 43(15):12710–12717.
Peng Q, Qin Y, Zhao X, et al. Superlight, mechanically flexible, thermally superinsulating, and antifrosting anisotropic nanocomposite foam based on hierarchical graphene oxide assembly[J]. ACS applied materials & interfaces, 2017, 9(50):44010–44017.
Yuan Y, Sun X, Yang M, et al. Stiff, thermally stable and highly anisotropic wood-derived carbon composite monoliths for electromagnetic interference shielding[J]. ACS applied materials & interfaces, 2017, 9(25):21371–21381.
Yuan Y, Liu L, Yang M, et al. Lightweight, thermally insulating and stiff carbon honeycomb-induced graphene composite foams with a horizontal laminated structure for electromagnetic interference shielding[J]. Carbon, 2017, 123:223–232.
Ding Y, Zhu J, Wang C, et al. Multifunctional three-dimensional graphene nanoribbons composite sponge[J]. Carbon, 2016, 104:133–140.
Peng Q, Wei H, Qin Y, et al. Shape-memory polymer nanocomposites with a 3D conductive network for bidirectional actuation and locomotion application[J]. Nanoscale, 2016, 8(42):18042–18049.
Wang C, Ding Y, Yuan Y, et al. Multifunctional, highly flexible, free-standing 3D polypyrrole foam[J]. Small, 2016, 12(30):4070–4076.
Yuan Y, Ding Y, Wang C, et al. Multifunctional stiff carbon foam derived from bread[J]. ACS applied materials & interfaces, 2016, 8(26):16852–16861.(通讯作者)
Qin Y, Peng Q, Ding Y, et al. Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application[J]. ACS nano, 2015, 9(9):8933–8941.
Shang Y, Wang C, He X, et al. Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions[J]. Nano Energy, 2015, 12:401–409.
Shang Y, He X, Wang C, et al. Large-deformation, multifunctional artificial muscles based on single-walled carbon nanotube yarns[J]. Advanced Engineering Materials, 2015, 17(1):14–20.
Wang C, Li Y, He X, et al. Cotton-derived bulk and fiber aerogels grafted with nitrogen-doped graphene[J]. Nanoscale, 2015, 7(17):7550–7558.
Wang C, He X, Tong L, et al. Tensile failure mechanisms of individual junctions assembled by two carbon nanotubes[J]. Composites Science and Technology, 2015, 110:159–165.
Yao Y, Lu H, Li J, et al. Electrospun silica-based inorganic/organic hybrid membranes with tunable performance in appropriate solvent systems[J]. RSC Adv, 2015, 5(108):89113–89120.
Peng Q, Li Y, He X, et al. Graphene nanoribbon aerogels unzipped from carbon nanotube sponges[J]. Advanced materials, 2014, 26(20):3241–3247.
Wang C, He X, Shang Y, et al. Multifunctional graphene sheet–nanoribbon hybrid aerogels[J]. J. Mater. Chem. A, 2014, 2(36):14994–15000.
Wang C, Li Y, Tong L, et al. The role of grafting force and surface wettability in interfacial enhancement of carbon nanotube/carbon fiber hierarchical composites[J]. Carbon, 2014, 69:239–246.
Wang C, Peng Q, Wu J, et al. Mechanical characteristics of individual multi-layer graphene-oxide sheets under direct tensile loading[J]. Carbon, 2014, 80:279–289.
Zhao W, Li Y, Wang S, et al. Elastic improvement of carbon nanotube sponges by depositing amorphous carbon coating[J]. Carbon, 2014, 76:19–26.
Li Y, Li Y, Ding Y, et al. Tuning the interfacial property of hierarchical composites by changing the grafting density of carbon nanotube using 1,3-propodiamine[J]. Composites Science and Technology, 2013, 85:36–42.
Li Y, Shang Y, He X, et al. Overtwisted, resolvable carbon nanotube yarn entanglement as strain sensors and rotational actuators[J]. ACS nano, 2013, 7(9):8128–8135.
Peng Q, Li Y, He X, et al. Interfacial enhancement of carbon fiber composites by poly(amido amine) functionalization[J]. Composites Science and Technology, 2013, 74:37–42.
Sun J, Li Y, Peng Q, et al. Macroscopic, flexible, high-performance graphene ribbons[J]. ACS nano, 2013, 7(11):10225–10232.
Wang C, He X, Tong L, et al. Theoretical prediction and experimental verification of pulling carbon nanotubes from carbon fiber prepared by chemical grafting method[J]. Composites Part A: Applied Science and Manufacturing, 2013, 50:1–10.
Zhang X, Li Y, Zhu Z, et al. Microstructure, mechanical and oxidation properties of in-situ synthesized (Y2O3 %2B TiC)/Ti-4.5Si composites[J]. International Journal of Materials Research, 2013, 104(1):65–70.
Guo Q, Peng Q, Li Y, et al. Dependence of amino-functionalization on interfacial adhesion strength in epoxy/Al laminated composites[J]. Polymers and Polymer Composites, 2012, 20(5):445–452.
He X, Wang C, Tong L, et al. Direct measurement of grafting strength between an individual carbon nanotube and a carbon fiber[J]. Carbon, 2012, 50(10):3782–3788.
He X, Wang C, Tong L, et al. A pullout model for inclined carbon nanotube[J]. Mechanics of Materials, 2012, 52:28–39.
Li Y, Peng Q, He X, et al. Synthesis and characterization of a new hierarchical reinforcement by chemically grafting graphene oxide onto carbon fibers[J]. J. Mater. Chem., 2012, 22(36):18748.
Peng Q, He X, Li Y, et al. Chemically and uniformly grafting carbon nanotubes onto carbon fibers by poly(amidoamine) for enhancing interfacial strength in carbon fiber composites[J]. J. Mater. Chem., 2012, 22(13):5928.
Shang Y, He X, Li Y, et al. Super-stretchable spring-like carbon nanotube ropes[J]. Advanced materials, 2012, 24(21):2896–2900.
Mei L, Li Y, Wang R, et al. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites with high interfacial strength[J]. Polymers and Polymer Composites, 2011, 19(2-3):107–112.
Mei L, He X, Li Y, et al. Enhancement of composite-metal interfacial adhesion strength by dendrimer[J]. Surface and Interface Analysis, 2011, 43(3):726–733.
Zhang X, Li Y, Song G, et al. Microstructure and mechanical properties of in situ TiC and Nd2O3 particles reinforced Ti–4.5wt.%Si alloy composites[J]. Materials & Design, 2011, 32(8-9):4327–4332.
Mei L, He X, Li Y, et al. Grafting carbon nanotubes onto carbon fiber by use of dendrimers[J]. Materials Letters, 2010, 64(22):2505–2508.