近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Yang, D. §, Xia, X., Mayer, M.J., 2024. A tutorial review of solar power curve: Regressions, model chains, and their hybridization and probabilistic extensions. Advances in Atmospheric Sciences, submitted.
Yang, G., Yang, D. §, Perez, M.J., Perez, R., Kleissl, J., Remund, J., Pierro, M., Wang, Y., Xia, X., Liu, B., Zhang, H., 2024. Hydrogen production using curtailed electricity of firm photovoltaic plants: Conception, modeling, and optimization. Energy Conversion and Management, submitted.
Mayer, M.J., Yang, D., 2024. Optimal place to apply post-processing in the deterministic photovoltaic power forecasting workflow. Renewable & Sustainable Energy Reviews, submitted.
Yang, D. §, Yang, G., Perez, R., Perez, M.J., 2024. Firm hierarchical solar forecasting. International Journal of Forecasting, submitted.
Zainali, S., Yang, D., Landelius, T., Campana, P.E., 2023. Site adaptation with machine learning for a Northern Europe gridded solar radiation product. Energy and AI, major revision.
Ma Lu, S., Yang, D., Anderson, M.C., Zainali, S., Stridh, B., Avelin, A., Campana, P.E., 2024. Photosynthetically active radiation separation model for high-latitude regions in agrivoltaic systems modeling. Journal of Renewable and Sustainable Energy, submitted.
Wang, W., Zhang, Z., Guo, Y., Yang, D. §, Kleissl, J., van der Meer, D., Yang, G., Hong, T., Liu, B., Huang, N., Mayer, M.J., 2024. Economics of physics-based solar forecasting in power system day-ahead scheduling. Renewable & Sustainable Energy Reviews, submitted.
Li, B., Yang, L., Fan, X., Yang, D., Shi, H., Xia, X., 2024. Joint retrieval of PM2.5 concentration and aerosol optical depth over China using multi-task learning on Fengyun-4A Advanced Geostationary Radiation Imager data. Advances in Atmospheric Sciences, submitted.
Yang, D. §, Kong, Y., Wang, W., Yang, G., Chen, Y., Liu, B., 2024. Comparing calibrated analog and dynamical ensemble solar forecasts. Solar Energy Advances, submitted.
Zhang, H., Zhang, X., Yang, D. §, Geng, B., Shuai, Y., Lougou, B.G., Huang, X., Wang, F., 2024. Methane-assisted two-step thermochemical splitting of carbon dioxide for solar fuels. Solar Energy, submitted.
Zhang, G., He, X., Yang, D., Wang, L., Sun, H., Duffy, A., 2024. Contactless soft fault detection for shielded cables via electromagnetic time reversal. Measurement, submitted.
Cui, J., Omer, A.M., Tao, N., Zhang, C., Zhang, Q., Ma, Y., Zhang, Z., Yang, D., Zhang, H., Fang, Q., Maldague, X., Sfarra, S., Meng, J., Duan, Y., 2024. Automatic crack segmentation in mural using optical pulsed thermography. Journal of Cultural Heritage, submitted.
Chu, Y., Wang, Y., Yang, D., Chen, S., Li, M., 2024. Spatial solar forecasting with remote sensing and deep learning for distributed solar generations: An overview and outlook. Renewable & Sustainable Energy Reviews, major revision.
Xia, X., Fu, D., Shao, W., Jiang, R., Wu, S., Zhang, P., Yang, D., Xia, X., 2023. Retrieving precipitable water vapor over land from satellite passive microwave radiometer measurements using automated machine learning. Geophysical Research Letter, accepted. (IF:5.2).
Fu, D., Shi, H., Gueymard, C.A., Yang, D., Zheng, Y., Che, H., Fan, X., Han, X., Gao, L., Bian, J., Duan, M., Xia, X., 2023. A deep-learning and transfer-learning hybrid aerosol retrieval algorithm for FY4-AGRI: Development and verification over Asia. Engineering, minor revision. (IF:12.8).
Wang, Y., Song, M., Yang, D., 2024. Sparse and dynamic graph-based spatio-temporal wind speed forecasting with both local and global features. Energy, major revision.
Song, M., Yang, D. §, Lerch, S., Xia, X., Yagli, G.M., Bright, J.M., Shen, Y., Liu, B., Liu, X., Mayer, M.J., 2024. Non-crossing quantile regression neural network as a calibration tool for ensemble weather forecasts. Advances in Atmospheric Sciences. Major revision.
Zhang, W., Archana, V., Gandhi, O., Rodríguez-Gallegos, C.D., Quan, H., Yang, D., Tan, C.-W., Srinivasan, D., 2024. SolarEdge: PV soiling power loss estimation at the edge using surveillance cameras. IEEE Transactions on Sustainable Energy, in press. https://doi.org/10.1109/TSTE.2023.3320690 (IF:8.8).
Gandhi, O., Zhang, W., Kumar, D.S., Rodríguez-Gallegos, C.D., Yagli, G.M., Yang, D., Reindl, T., Srinivasan, D., 2024. The economics of solar forecasting. Renewable & Sustainable Energy Reviews, 189, 113915. https://doi.org/10.1016/j.rser.2023.113915 (IF:15.9)
Yang, D. §, Gu, Y., Mayer, M.J., Gueymard, C.A., Wang, W., Kleissl, J., Li, M., Chu, Y., Bright, J.M., 2024. Regime-dependent 1-min irradiance separation model with climatology clustering. Renewable & Sustainable Energy Reviews, 189, 113992. https://doi.org/10.1016/j.rser.2023.113992 (IF:15.9)
Remund, J., Perez, R., Perez, M., Pierro, M., Yang, D., 2023. Firm PV power generation: Overview and outlook. Solar RRL, 2300497. https://doi.org/10.1002/solr.202300497 (IF:7.9).
Wang, L., Song, Y., Lyu, C., Yang, D., Yang, G., Shen, D., 2023. Optimization of lithium-ion battery charge strategies from a thermal safety perspective. IEEE Transactions on Transportation Electrification, in press. https://doi.org/10.1109/TTE.2023.3308484 (IF:7.0).
Wang, Q.-G., Lim, L.H.I., Ye, Z., Nie, Z.-Y., Yang, D., 2023. LQR approach to robust stabilization of state space systems with matched uncertainties. ISA Transactions, in press. https://doi.org/10.1016/j.isatra.2023.07.034 (IF:7.3).
Zhang, H., Zhang, X., Yang, D. §, Shuai, Y., Lougou, B.G., Pan, Q., Wang, F., 2023. Application of CoFe2O4–NiO nanoparticle-coated foam-structured material in a high-flux solar thermochemical reactor. Science China Technological Sciences, 66(11), 3276–3286. https://doi.org/10.1007/s11431-023-2397-7 (IF:4.6).
Jiang, G., Wang, X., Hu, J., Wang, Y., Li, X., Yang, D., Mostacci, M., Sfarra, S., Maldague, X., Zhang, H., 2023. Simulation-aided infrared thermography with decomposition-based noise reduction for detecting defects in ancient polyptychs. Heritage Science, 11(1), 223. https://doi.org/10.1186/s40494-023-01040-0 (IF:2.2).
Yang, D. §, 2023. The future of solar forecasting in China. Journal of Renewable and Sustainable Energy, 15(5), 052301. https://doi.org/10.1063/5.0172315 (IF:2.5).
Huang, C., Shi, H., Yang, D., Gao, L., Zhang, P., Fu, D., Xia, X., Chen, Q., Yuan, Y., Liu, M., Hu, B., Lin, K., Li, X., 2023. Retrieval of sub-kilometer resolution solar irradiance from Fengyun-4A satellite using a region-adapted Heliosat-2 method. Solar Energy, 264, 112038. https://doi.org/10.1016/j.solener.2023.112038 (IF: 6.7).
Yang, G., Yang, D. §, Lyu, C., Wang, W., Huang, N., Kleissl, J., Perez, M.J., Perez, R., Srinivasan, D., 2023. Implications of future price trends and interannual variability on firm solar power delivery with overbuilding and battery storage. IEEE Transactions on Sustainable Energy, 14(4), 2036–2048. https://doi.org/10.1109/TSTE.2023.3274109 (IF:8.8).
Mayer, M.J., Yang, D., Szintai, B., 2023. Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME. Applied Energy, 352, 121958. https://doi.org/10.1016/j.apenergy.2023.121958 (IF:11.2).
Yang, D. §, Kleissl, J., 2023. Summarizing ensemble NWP forecasts for grid operators: Consistency, elicitability, and economic value. International Journal of Forecasting, 39(4), 1640–1654. https://doi.org/10.1016/j.ijforecast.2022.08.002 (IF:7.9).
Xiang, S., Omer, A.M., Li, M., Yang, D., Osman, A., Han, B., Gao, Z., Hu, H., Ibarra-Castanedo, C., Maldague, X., Fang, Q., Sfarra, S., Zhang, H., Duan, Y., 2023. A reliability study on automated defect assessment in optical pulsed thermography. Infrared Physics & Technology, 134, 104878. https://doi.org/10.1016/j.infrared.2023.104878 (IF:3.3).
Duan, Y., Shao, T., Tao, Y., Hu, H., Han, B., Cui, J., Yang, K., Sfarra, S., Sarasini, F., Santulli, C., Osman, A., Mross, A., Zhang, M., Yang, D., Zhang, H., 2023. Automatic air-coupled ultrasound detection of impact damages in fiber-reinforced composites based on one-dimension deep learning models. Journal of Nondestructive Evaluation, 42(3), 79. https://doi.org/10.1007/s10921-023-00988-0 (IF:2.8).
Shen, D., Yang, D., Lyu, C., Hinds, G., Wang, L., Bai, M., 2023. Detection and quantitative diagnosis of micro-short-circuit faults in lithium-ion battery packs considering cell inconsistency. Green Energy and Intelligent Transportation, 2(5), 100109. https://doi.org/10.1016/j.geits.2023.100109 (IF:TBD).
Wang, L., Song, Y., Lyu, C., Yang, D., Wang, W., 2023. Structure optimization of the battery thermal management system based on surrogate modeling of approximate and detailed simulations. Applied Thermal Engineering, 235, 121289. https://doi.org/10.1016/j.applthermaleng.2023.121289 (IF:6.4).
Yang, D. §, Yang, G., Liu, B., 2023. Combining quantiles of calibrated solar forecasts from ensemble numerical weather prediction. Renewable Energy, 215, 118993. https://doi.org/10.1016/j.renene.2023.118993 (IF:8.7).
Shi, H., Yang, D. §, Wang, W., Fu, D., Gao, L., Zhang, J., Hu, B., Shan, Y., Zhang, Y., Bian, Y., Chen, H., Xia, X., 2023. First estimation of high-resolution solar photovoltaic resource maps over China with Fengyun-4A satellite and machine learning. Renewable & Sustainable Energy Reviews, 184, 113549. https://doi.org/10.1016/j.rser.2023.113549 (IF:15.9).
Zhang, Z., Zhang, H., Hu, J., Sfarra, S., Mostacci, M., Wang, Y., Yang, D., Maldague, X., Niu, D., Duan, Y., 2023. Defect detection: An improved YOLOX network applied to a replica of “The Birth of Venus” by Botticelli. Journal of Cultural Heritage, 62, 404–411. https://doi.org/10.1016/j.culher.2023.06.018 (IF:3.1).
Wang, L., Song, Y., Lyu, C., Yang, D., Wang, W., Ge, Y., 2023. Online maximum discharge power prediction for lithium-ion batteries with thermal safety constraints. Journal of Energy Storage, 71, 108041. https://doi.org/10.1016/j.est.2023.108041 (IF:9.4)
Bai, M., Lyu, C., Yang, D., 2023. Quantification of lithium plating in lithium-ion batteries based on impedance spectrum and artificial neural network. Batteries, 9(7), 350. https://doi.org/10.3390/batteries9070350 (IF:4.0)
Ding, M., Li, H., Zhao, L., Yang, D., 2023. A high-performance isolated bridgeless resonant SEPIC PFC converter at medium line frequencies. IEEE Transactions on Power Electronics, 38(8), 10040–10051. https://doi.org/10.1109/TPEL.2023.3279610 (IF: 6.7).
Lyu, C., Song, Y., Yang, D., Wang, W., Ge, Y., Wang, L., 2023. Online prediction for heat generation rate and temperature of lithium-ion battery using multi-step-ahead extended Kalman filtering. Applied Thermal Engineering, 231, 120890. https://doi.org/10.1016/j.applthermaleng.2023.120890 (IF:6.4).
Liu, B., Yang, D. §, Mayer, M.J., Coimbra, C.F.M., Kleissl, J., Kay, M., Wang, W., Bright, J.M., Xia, X., Lv, X., Srinivasan, D., Wu, Y., Bayer, H.G., Yagli, G.M., Shen, Y., 2023. Predictability and forecast skill of solar irradiance over the contiguous United States. Renewable & Sustainable Energy Reviews, 182, 113359. https://doi.org/10.1016/j.rser.2023.113359 (IF:15.9).
Yang, G., Zhang, H., Wang, W., Liu, B., Lyu, C., Yang, D., 2023. Capacity optimization and economic analysis of PV–hydrogen hybrid system with physical solar power curve modeling. Energy Conversion and Management, 288, 117128. https://doi.org/10.1016/j.enconman.2023.117128 (IF:10.4).
Li, Q., Zhang, H., Hu, J., Sfarra, S., Mostacci, M., Yang, D., Georges, M., Vavilov, V.P., Maldague, X.P.V., 2023. Using the unsupervised mixture of Gaussian models for multispectral non-destructive evaluation of the replica of Botticelli’s “The Birth of Venus”. Journal of Nondestructive Evaluation, 42, 38. https://doi.org/10.1007/s10921-023-00947-9 (IF:2. 8).
Zhang, G., He, X., Wang, L., Yang, D., Chang, K., Duffy, A., 2023. Step frequency TR-MUSIC for soft fault detection and location in coaxial cable. IEEE Transactions on Instrumentation & Measurement, 72, 3511611. https://doi.org/10.1109/TIM.2023.3261911 (IF:5.6).
Shen, D., Lyu, C., Yang, D., Hinds, G., Wang, L., 2023. Connection fault diagnosis for lithium-ion battery packs onboard electric vehicles using broad belief network. Energy, 274, 127291. https://doi.org/10.1016/j.energy.2023.127291 (IF:9.0).
Zhang, G., Chen, X., Yang, D., Wang, L., He, X., Zhang, Z., 2023. Multi-physics coupling simulation technique for phase stable cables. Electronics, 12(7), 1602. https://doi.org/10.3390/electronics12071602 (IF:2.9).
Mayer, M.J., Yang, D., 2023. Calibration of deterministic NWP forecasts and its impact on verification. International Journal of Forecasting, 39(2), 981–991. https://doi.org/10.1016/j.ijforecast.2022.03.008 (IF:7.9)
Zhang, G., Chen, X., Yang, D., Duffy, A., Li, M., Wang, L., 2023. Thermal effects on crosstalk of multiconductor PVC cables and estimation of thermal accelerating ratios. IEEE Transactions on Electromagnetic Compatibility, 65(1), 323–333. https://doi.org/10.1109/TEMC.2022.3224501 (IF:2.1).
Zhang, H., Zhang, X., Yang, D. §, Shuai, Y., Lougou, B.G., Pan, Q., Wang, F., 2023. Selection of iron-based oxygen carriers for two-step solar thermochemical splitting of carbon dioxide. Energy Conversion and Management, 279, 116772. https://doi.org/10.1016/j.enconman.2023.116772 (IF:10.4).
Ju, X., Cheng, Y., Du, B., Yang, M., Yang, D., Cui, S., 2023. AC loss analysis and measurement of a hybrid transposition hairpin winding for EV traction machines driven by SiC inverter. IEEE Transactions on Industrial Electronics, 70(4), 3525–3536. https://doi.org/10.1109/TEC.2022.3183399 (IF:7.7).
Fu, D., Gueymard, C.A., Yang, D., Zheng, Y., Xia, X., Bian, J., 2023. Improving aerosol optical depth retrievals from Himawari-8 with ensemble learning enhancement: Validation over Asia. Atmospheric Research, 284, 106624. https://doi.org/10.1016/j.atmosres.2023.106624 (IF:5.5).
Mayer, M.J., Yang, D., 2023. Pairing ensemble numerical weather prediction with ensemble physical model chain for probabilistic photovoltaic power forecasting. Renewable & Sustainable Energy Reviews, 175, 113171. https://doi.or/10.1016/j.rser.2023.113171 (IF:15.9).
You, J., Fu, R., Liang, H. Yang, D., Lin, Y., Dinavahi, V., 2022. Energy conservation model for electromechanical transient characteristics of electromagnetic actuators. IEEE Transactions on Energy Conversion, 37(4), 2535–2545. https://doi.org/10.1109/TEC.2022.3183399 (IF:4.9)
Wang, W., Yang, D. §, Hong, T., Kleissl, J., 2022. An archived dataset from the ECMWF Ensemble Prediction System for probabilistic solar power forecasting. Solar Energy, 248, 64–75. https://doi.org/10.1016/j.solener.2022.10.062 (IF:6.7).
Mayer, M.J., Yang, D., 2022. Probabilistic photovoltaic power forecasting using a calibrated ensemble of model chains. Renewable & Sustainable Energy Reviews, 168, 112821. https://doi.org/10.1016/j.rser.2022.112821 (IF:15.9).
Yang, D. §, Wang, W., Xia, X., 2022. A concise overview on solar resource assessment and forecasting. Advances in Atmospheric Sciences, 39(8), 1239–1251. https://doi.org/10.1007/s00376-021-1372-8 (IF:5.8).
Yang, D. §, 2022. Correlogram, predictability error growth, and bounds of mean square error of solar irradiance forecasts. Renewable & Sustainable Energy Reviews, 167, 112736. https://doi.org/10.1016/j.rser.2022.112736 (IF:15.9).
Hu, J., Zhang, H., Sfarra, S., Gargiulo, G., Avdelidis, N.P., Zhang, M., Yang, D., Maldague, X., 2022. Non-destructive imaging of marqueteries based on a new infrared-terahertz fusion technique. Infrared Physics & Technology, 125, 104277. https://doi.org/10.1016/j.infrared.2022.104277 (IF:3.3).
Sun, X., Yang, D., Gueymard, C.A., Bright, J.M., Wang, P., 2022. Effects of spatial scale of atmospheric reanalysis data on clear-sky surface radiation modeling in tropical climates: A case study for Singapore. Solar Energy, 241, 525–537. https://doi.org/10.1016/j.solener.2022.06.001 (IF:6.7).
Huang, N., He, Q., Qi, J., Hu, Q., Wang, R., Cai, G., Yang, D., 2022. Multinodes interval electric vehicle day-ahead charging load forecasting based on joint adversarial generation. International Journal of Electrical Power and Energy Systems, 143, 108404. https://doi.org/10.1016/j.ijepes.2022.108404 (IF:5.2)
Lyu, C., Song, Y., Yang., D., Wang, W., Zhu, S., Ge, Y., Wang, L., 2022. Surrogate model of liquid cooling system for lithium-ion battery using extreme gradient boosting. Applied Thermal Engineering, 213, 118675. https://doi.org/10.1016/j.applthermaleng.2022.118675 (IF:6.4)
Voyant, C., Notton, G., Duchaud, J.-L., Gutiérrez, L.A.G., Bright, J.M., Yang, D., 2022. Benchmarks for solar radiation time series forecasting. Renewable Energy, 191, 747–762. https://doi.org/10.1016/j.renene.2022.04.065 (IF:8.7).
Yang, D. §, Wang, W., Bright, J.M., Voyant, C., Notton, G., Zhang, G., Lyu, C., 2022. Verifying operational intra-day solar forecasts from ECMWF and NOAA. Solar Energy, 236, 743–755. https://doi.org/10.1016/j.solener.2022.03.004 (IF:6.7).
Fu, D., Liu, M., Yang, D. §, Che, H., Xia, X., 2022. Influences of atmospheric reanalysis on the accuracy of clear-sky irradiance estimates: Comparing MERRA-2 and CAMS. Atmospheric Environment, 277, 119080. https://doi.org/10.1016/j.atmosenv.2022.119080 (IF:5.0).
Wang, W., Yang, D. §, Huang, N., Lyu, C., Zhang, G., Han, X., 2022. Irradiance-to-power conversion based on physical model chain: An application on the optimal configuration of multi-energy microgrid in cold climate. Renewable & Sustainable Energy Reviews, 161, 112356. https://doi.org/10.1016/j.rser.2022.112356 (IF:15.9).
Yang, D. §, Wang, W., Gueymard, C.A., Hong, T., Kleissl, J., Huang, J., Perez, M.J., Perez, R., Bright, J.M., Xia, X., van der Meer, D., Peters, I.M., 2022. A review of solar forecasting and its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality. Renewable & Sustainable Energy Reviews, 161, 112348. https://doi.org/10.1016/j.rser.2022.112348 (IF:15.9).
Yang, D. §, 2022. Estimating 1-min beam and diffuse irradiance from the global irradiance: A review, a benchmarking dataset, and an extensive worldwide validation of latest separation models at 126 stations. Renewable & Sustainable Energy Reviews, 159, 112195. https://doi.org/10.1016/j.rser.2022.112195 (IF:15.9).
Yang, D. §, Wang, W., Hong, T., 2022. A historical weather forecast dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF) for energy forecasting. Solar Energy, 232, 263–274. https://doi.org/10.1016/j.solener.2021.12.011 (IF:6.7).
Yagli, G.M., Yang, D. §, Srinivasan, D., 2022. Ensemble solar forecasting and post-processing with neighboring satellite pixels. Renewable & Sustainable Energy Reviews, 155, 111909. https://doi.org/10.1016/j.rser.2021.111909 (IF:15.9).
Zhang, G., Yang, D. §, Galanis, G., Androulakis, E., 2022. Solar forecasting with hourly updated numerical weather prediction. Renewable & Sustainable Energy Reviews, 154, 111768. https://doi.org/10.1016/j.rser.2021.111768 (IF:15.9).
Yang, D. §, Yagli, G.M., Srinivasan, D., 2022. Sub-minute probabilistic solar forecasting for real-time stochastic simulations. Renewable & Sustainable Energy Reviews, 153, 111736. https://doi.org/10.1016/j.rser.2021.111736 (IF:15.9).
Zhang, H., Shuai, Y., Lougou, B.G., Jiang, B., Yang, D., Pan, Q., Wang, F., Huang, X., 2022. Effects of foam structure on thermochemical characteristics of porous-filled solar reactor. Energy, 239, 122219. https://doi.org/10.1016/j.energy.2021.122219 (IF: 9.0).
Yang, D. §, 2021. Temporal-resolution cascade model for separation of 1-min beam and diffuse irradiance. Journal of Renewable and Sustainable Energy, 13(5), 056101. https://doi.org/10.1063/5.0067997 (IF:2.847).
Yang, X., Yang, D. §, Bright, J.M., Yagli, G.M., Wang, P., 2021. On predictability of solar irradiance. Journal of Renewable and Sustainable Energy, 13(5), 056501. https://doi.org/10.1063/5.0056918 (IF:2.847).
Yang, D. §, Gueymard, C.A., 2021. Probabilistic post-processing of gridded atmospheric variables and its application to site adaptation of shortwave solar radiation. Solar Energy, 225, 427–443. https://doi.org/10.1016/j.solener.2021.05.050 (IF:7.188).
Yang, D. §, Li, W., Yagli, G.M., Srinivasan, D., 2021. Operational solar forecasting for grid integration: Standards, challenges, and outlook. Solar Energy, 224, 930–937. https://doi.org/10.1016/j.solener.2021.04.002 (IF:7.188).
Yang, D. §, Gueymard, C.A., 2021. Probabilistic merging and verification of monthly gridded aerosol products. Atmospheric Environment, 247, 118146. https://doi.org/10.1016/j.atmosenv.2020.118146 (IF:5.755).
Yang, D. §, van der Meer, D., 2021. Post-processing in solar forecasting: Ten overarching thinking tools. Renewable & Sustainable Energy Reviews, 140, 110735. https://doi.org/10.1016/j.rser.2021.110735 (IF:16.799).
Yang, D. §, 2021. Validation of the 5-min irradiance from the National Solar Radiation Database (NSRDB). Journal of Renewable and Sustainable Energy, 13(1), 016101. https://doi.org/10.1063/5.0030992 (IF:2.847).
Frimane, A., Bright, J.M., Yang, D., Ouhammou, B., Aggour, M., 2020. Dirichlet downscaling model for synthetic solar irradiance time series. Journal of Renewable and Sustainable Energy, 12(6), 063702. https://doi.org/10.1063/5.0028267 (IF:2.219).
Hong, T., Pinson, P., Wang, Y., Weron, R., Yang, D., Zareipour, H., 2020. Energy forecasting: A review and outlook. IEEE Open Access Journal of Power and Energy, 7, 376–388. https://doi.org/10.1109/OAJPE.2020.3029979 (Best paper award; Invited review; IF:4.255).
Quan, H., Khosravi, A., Yang, D., Srinivasan, D., 2020. A survey of computational intelligence techniques for wind power uncertainty quantification in smart grids. IEEE Transactions on Neural Networks and Learning Systems 31(11), 4582–4599. https://doi.org/10.1109/TNNLS.2019.2956195 (IF:10.451).
Yang, D. §, 2020. Quantifying the spatial scale mismatch between satellite-derived solar irradiance and in situ measurements: A case study using CERES synoptic surface shortwave flux and the Oklahoma Mesonet. Journal of Renewable and Sustainable Energy 12(5), 056104. https://doi.org/10.1063/5.0025771 (IF:2.219).
Yagli, G.M., Yang, D. §, Srinivasan, D., 2020. Reconciling solar forecasts: Probabilistic forecasting with homoscedastic Gaussian errors on a geographical hierarchy. Solar Energy 210, 59–67. https://doi.org/10.1016/j.solener.2020.06.005 (Special Issue on Grid Integration, IF:5.742).
Yang, D. §, 2020. Reconciling solar forecasts: Probabilistic forecast reconciliation in a non- parametric framework. Solar Energy 210, 49–58. https://doi.org/10.1016/j.solener.2020.03.095 (Special Issue on Grid Integration, IF:5.742).
Yang, D. §, 2020. Comment: Operational aspects of solar forecasting. Solar Energy 210, 38–40. https://doi.org/10.1016/j.solener.2020.04.014 (Special Issue on Grid Integration, IF:5.742).
Yang, D. §, Alessandrini, S., Antonanzas, J., Antonanzas-Torres, F., Badescu, V., Beyer, H.G., Blaga, R., Boland, J., Bright, J.M., Coimbra, C.F.M., David, M., Frimane, A, Gueymard, C.A., Hong, T., Kay, M.J., Killinger, S., Kleissl, J., Lauret, P., Lorenz, E., van der Meer, D., Paulescu, M., Perez., R., Perpinan-Lamigueiro, O., Peters, I.M., Reikard, G., Renne, D., Saint-Drenan, Y.-M., Shuai, Y., Urraca, R., Verbois, H., Vignola, F., Voyant, C., Zhang, J., 2020. Verification of deterministic solar forecasts. Solar Energy 210, 20–37. https://doi.org/10.1016/j.solener.2020.04.019 (Special Issue on Grid Integration, IF:5.742).
Yang, D. §, Bright, J.M., 2020. Worldwide validation of 8 satellite-derived and reanalysis solar radiation products: A preliminary evaluation and overall metrics for hourly data over 27 years. Solar Energy 210, 3–19. https://doi.org/10.1016/j.solener.2020.04.016 (Special Issue on Grid Integration, IF:5.742).
Li, W., Srinivasan, D., Zhang, J., Yang, D. §, 2020. Preface of progress in solar energy special issue: Grid integration. Solar Energy 210, 1–2. https://doi.org/10.1016/j.solener.2020.08.093 (Special Issue on Grid Integration, IF:5.742).
Yang, D. §, Gueymard, C.A., Ensemble model output statistics for the separation of direct and diffuse components from 1-min global irradiance. Solar Energy 208, 591–603. https://doi.org/10.1016/j.solener.2020.05.082 (IF:5.742).
Yagli, G.M., Yang, D. §, Srinivasan, D., 2020. Ensemble solar forecasting using data-driven models with probabilistic post-processing through GAMLSS. Solar Energy 208, 612–622. https://doi.org/10.1016/j.solener.2020.07.040 (IF:5.742).
Yang, D. §, van der Meer, D., Munkhammar, J., 2020. Probabilistic solar forecasting benchmarks on a standardized dataset at Folsom, California. Solar Energy 206, 628–639. https://doi.org/10.1016/j.solener.2020.05.020 (IF:5.742).
Yang, D. §, 2020. Ensemble model output statistics as a probabilistic site-adaptation tool for solar irradiance: A revisit. Journal of Renewable and Sustainable Energy 12(3), 036101. https://doi.org/10.1063/5.0010003 (IF:2.219).
van der Meer, D., Yang, D., Widen, J., Munkhammar, J., 2020. Clear-sky index space-time trajectories from probabilistic solar forecasts: Comparing promising copulas. Journal of Renewable and Sustainable Energy 12(2), 026102. https://doi.org/10.1063/1.5140604 (Featured Article, IF:2.219).
Gueymard, C.A., Yang, D. §, 2020. Worldwide validation of CAMS and MERRA-2 reanalysis aerosol optical depth products using 15 years of AERONET observations. Atmospheric Environment 225, 117216. https://doi.org/10.1016/j.atmosenv.2019.117216 (IF:4.798).
Yang, D. §, 2020. Choice of clear-sky model in solar forecasting. Journal of Renewable and Sustainable Energy 12(2), 026101. https://doi.org/10.1063/5.0003495 (Featured Article, IF:2.219).
Quan, H., Yang, D. §, 2020. Probabilistic solar irradiance transposition models. Renewable & Sustainable Energy Reviews 125, 109814. https://doi.org/10.1016/j.rser.2020.109814 (IF:14.982).
Yang, D. §, 2020. Ensemble model output statistics as a probabilistic site-adaptation tool for satellite-derived and reanalysis solar irradiance. Journal of Renewable and Sustainable Energy 12(1), 016102. https://doi.org/10.1063/1.5134731 (Featured Article, IF:2.219).
Yagli, G.M., Yang, D. §, Gandhi, O., Srinivasan, D., 2020. Can we justify producing univariate machine-learning forecasts with satellite-derived solar irradiance? Applied Energy 259, 114122. https://doi.org/10.1016/j.apenergy.2019.114122 (IF:9.746).
Yang, D. §, 2019. Making reference solar forecasts with climatology, persistence, and their optimal convex combination. Solar Energy 193, 981–985. https://doi.org/10.1016/j.solener.2019.10.006 (IF:4.608).
Yang, D. §, Kleissl, J., Wu, E., 2019. Operational solar forecasting for the real-time market. International Journal of Forecasting 35(4), 1499–1519. https://doi.org/10.1016/j.ijforecast.2019.03.009 (Special Section, IF:2.825).
Yang, D. §, 2019. Ultra-fast analog ensemble using kd-tree. Journal of Renewable and Sustainable Energy 11(5), 053703. https://doi.org/10.1063/1.5124711 (Editor’s Pick, IF:1.575).
Yang, D. §, 2019. Standard of reference in operational day-ahead deterministic solar forecasting. Journal of Renewable and Sustainable Energy 11(5), 053702. https://doi.org/10.1063/1.5114985 (Featured Article, Special Collection, IF:1.575).
Yang, D. §, Gueymard, C.A., 2019. Producing high-quality solar resource maps by integrating high- and low-accuracy measurements using Gaussian processes. Renewable & Sustainable Energy Reviews 113, 109260. https://doi.org/10.1016/j.rser.2019.109260 (IF:12.110).
Feng, C., Yang, D., Hodge, B.M., Zhang, J., 2019. OpenSolar: Promoting the openness and accessibility of diverse public solar datasets. Solar Energy 188, 1369–1379. https://doi.org/10.1016/j.solener.2019.07.016 (IF:4.608).
Yang, D. §, Zhang, A.N., 2019. Impact of information sharing and forecast combination on fast-moving-consumer-goods demand forecast accuracy. Information 10(8), 260. https://doi.org/10.3390/info10080260.
Yang, D. §, 2019. SolarData package update v1.1: R functions for easy access of Baseline Surface Radiation Network (BSRN). Solar Energy 188, 970–975. https://doi.org/10.1016/j.solener.2019.05.068 (IF:4.608).
Yang, D. §, 2019. Post-processing of NWP forecasts using ground or satellite-derived data through kernel conditional density estimation. Journal of Renewable and Sustainable Energy 11(2), 026101. https://doi.org/10.1063/1.5088721 (Special Collection, IF:1.575).
Yang, D. §, Boland, J., 2019. Satellite-augmented diffuse solar radiation separation models. Journal of Renewable and Sustainable Energy 11(2), 023705. https://doi.org/10.1063/1.5087463 (Editor’s Pick, Special Collection, IF:1.575).
Yang, D. §, 2019. A guideline to solar forecasting research practice: Reproducible, operational, probabilistic or physically-based, ensemble, and skill (ROPES). Journal of Renewable and Sustainable Energy 11(2), 022701. https://doi.org/10.1063/1.5087462 (Featured Article, Special Collection, Review, IF:1.575).
Yang, D. §, Perez, R., 2019. Can we gauge forecasts using satellite-derived solar irradiance? Journal of Renewable and Sustainable Energy 11(2), 023704. https://doi.org/10.1063/1.5087588 (Featured Article, Special Collection, IF:1.575).
Yang, D. §, Alessandrini, S., 2019. An ultra-fast way of searching weather analogs for renewable energy forecasting. Solar Energy 185 255–261. https://doi.org/10.1016/j.solener.2019.03.068 (IF:4.608).
Yang, D. §, 2019. A universal benchmarking method for probabilistic solar irradiance forecasting. Solar Energy 184, 410–416. https://doi.org/10.1016/j.solener.2019.04.018 (IF:4.608).
Yagli, G.M., Yang, D. §, Srinivasan, D., 2019. Automatic hourly solar forecasting using machine learning models. Renewable & Sustainable Energy Reviews 105, 487–498. https://doi.org/10.1016/j.rser.2019.02.006 (IF:12.110).
Yang, D. §, 2019. On post-processing day-ahead NWP forecasts using Kalman filtering. Solar Energy 182, 179–181. https://doi.org/10.1016/j.solener.2019.02.044 (IF:4.608).
Yagli, G.M., Yang, D. §, Srinivasan, D., 2019. Reconciling solar forecasts: Sequential reconciliation. Solar Energy 179, 391–397. https://doi.org/10.1016/j.solener.2018.12.075 (IF:4.608).
Lim, L.H.I., Yang, D., 2019. High-Precision XY stage motion control of industrial microscope. IEEE Transactions on Industrial Electronics 66, 1984–1992. https://doi.org/10.1109/TIE.2018.2838102 (IF:7.515)
Yang, D. §, 2018. Ultra-fast preselection in lasso-type spatio-temporal solar forecasting problems. Solar Energy 176, 788–796. https://doi.org/10.1016/j.solener.2018.08.041 (IF:4.374).
Yang, D. §, 2018. A correct validation of the National Solar Radiation Data Base (NSRDB). Renewable & Sustainable Energy Reviews 97, 152–155. https://doi.org/10.1016/j.rser.2018.08.023 (IF:9.184).
Yang, D. §, 2018. SolarData: An R package for easy access of publicly available solar datasets. Solar Energy 171, A3–A12. https://doi.org/10.1016/j.solener.2018.06.107 (The very first Data Article of Solar Energy, IF:4.374).
Yang, D. §, Gueymard, C.A., Kleissl, J., 2018. Editorial: Submission of Data Article is now open. Solar Energy 171, A1-A2. https://doi.org/10.1016/j.solener.2018.07.006 (Editorial, IF:4.374).
Yang, D. §, 2018. Spatial prediction using kriging ensemble. Solar Energy 171, 997–982. https://doi.org/10.1016/j.solener.2018.06.105 (IF:4.374).
Yang, D. §, 2018. Kriging for NSRDB PSM version 3 satellite-derived solar irradiance. Solar Energy 171, 876–883. https://doi.org/10.1016/j.solener.2018.06.055 (IF:4.374).
Rodríguez-Gallegos, C.D., Yang, D., Gandhi, O., Bieri, M., Reindl, T., Panda, S.K., 2018. A multi-objective and robust optimization approach for sizing and placement of PV and batteries in off-grid systems fully operated by diesel generators: An Indonesian case study. Energy 160, 410–429. https://doi.org/10.1016/j.energy.2018.06.185 (IF:4.968)
Yang, D. §, Kleissl, J., Gueymard, C.A., Pedro, H.T.C., Coimbra, C.F.M., 2018. History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining. Solar Energy 168, 60–101. https://doi.org/10.1016/j.solener.2017.11.023 (Invited review, IF:4.374).
Yang, D. §, Dong, Z., 2018. Operational photovoltaics power forecasting using seasonal time series ensemble. Solar Energy 166, 529–541. https://doi.org/10.1016/j.solener.2018.02.011 (IF:4.374).
Rodríuez-Gallegos, C.D., Gandhi, O., Yang, D., Alvarez-Alvarado, M.S., Zhang, W., Reindl, T., Panda, S.K., 2018. A siting and sizing optimization approach for PV–battery-diesel hybrid systems. IEEE Transactions on Industry Applications 54(3), 2637–2645. https://doi.org/10.1109/TIA.2017.2787680 (IF:2.937).
Yang, D. §, Quan, H., Disfani, V.R., Rodríguez-Gallegos, C.D., 2017. Reconciling solar forecasts: Temporal hierarchy. Solar Energy 158, 332–346. https://doi.org/10.1016/j.solener.2017.09.055 (IF:4.374).
Yang, D. §, 2017. On adding and removing sensors in a solar irradiance monitoring network for areal forecasting and PV system performance evaluation. Solar Energy 155, 1417–1430. https://doi.org/10.1016/j.solener.2017.07.061 (IF:4.374)
Yang, D. §, Dong, Z., Lim, L.H.I., Liu, L., 2017. Analyzing big time series data in solar engineering using features and PCA. Solar Energy 153, 317–328. https://doi.org/10.1016/j.solener.2017.05.072 (IF:4.374)
Yang, D. §, Quan, H., Disfani, V.R., Liu, L., 2017. Reconciling solar forecasts: Geographical hierarchy. Solar Energy 146, 276–286. https://doi.org/10.1016/j.solener.2017.02.010 (IF:4.374)
Yang, D. §, 2016. Solar radiation on inclined surfaces: Corrections and benchmarks. Solar Energy 136, 288–302. http://dx.doi.org/10.1016/j.solener.2016.06.062 (Review, IF:4.018)
Sharma, V., Yang, D., Walsh, W.M., Reindl, T., 2016. Short term solar irradiance forecasting using a mixed wavelet neural network. Renewable Energy 90, 481–492. http://dx.doi.org/10.1016/j.renene.2016.01.020 (IF:4.357)
Nobre, A., Karthik, S., Liu, H., Yang, D., Martins, F.R., Pereira, E.B., Ruther, R., Reindl, T., Peters, I.M., 2016. On the impact of haze on the yield of photovoltaic systems in Singapore. Renewable Energy 89, 389–400. http://dx.doi.org/10.1016/j.renene.2015.11.079 (IF:4.357)
Aryaputera, A.W., Yang, D. §, Zhao, L., Walsh, W.M., 2015. Very short-term irradiance forecasting at unobserved locations using spatio-temporal kriging. Solar Energy 122, 1266– 1278. http://dx.doi.org/10.1016/j.solener.2015.10.023 (IF:3.685)
Yang, D. §, 2015. Simulation study of parameter estimation and measurement planning on photovoltaics degradation. International Journal of Energy and Statistics 3(3), 1550013. http://dx.doi.org/10.1142/S2335680415500131
Yang, D. §, Chen, N., 2015. Expanding existing solar irradiance monitoring network using entropy. IEEE Transactions on Sustainable Energy 6(4), 1208–1215. http://dx.doi.org/10.1109/TSTE.2015.2421734 (IF:3.727)
Dong, Z., Yang, D., Reindl, T., Walsh, W.M., 2015. A novel hybrid approach based on self- organizing maps, support vector regression and particle swarm optimization to forecast solar irradiance. Energy 82, 570–577. http://dx.doi.org/10.1016/j.energy.2015.01.066 (IF:4.292)
Yang, D. §, Ye, Z., Lim, L.H.I., Dong, Z., 2015. Very short term irradiance forecasting using the lasso. Solar Energy 114, 314–326. https://doi.org/10.1016/j.solener.2015.01.016 (IF:3.685)
Lim, L.H.I., Ye, Z., Ye, J., Yang, D., Du, H., 2015. A linear identification of diode models from single I–V characteristics of PV panels. IEEE Transactions on Industrial Electronics 62(7), 4181–4193. http://dx.doi.org/10.1109/TIE.2015.2390193 (IF:6.383)
Yang, D. §, Sharma, V., Ye, Z., Lim, L.H.I., Zhao, L., Aryaputera, A.W., 2015. Forecasting of global horizontal irradiance by exponential smoothing, using decompositions. Energy 81, 111–119. http://dx.doi.org/10.1016/j.energy.2014.11.082 (IF:4.292)
Aryaputera, A.W., Yang, D., Walsh, W.M., 2015. Day-ahead solar irradiance forecasting in a tropical environment. Journal of Solar Energy Engineering 137(5), 051009. http://dx.doi.org/10.1115/1.4030231 (IF:1.571)
Yang, D. §, Reindl, T., 2015. Optimal solar irradiance sampling design using the variance quadtree algorithm. Renewables: Wind, Water and Solar 2(1), 1–8. http://dx.doi.org/10.1186/s40807-014-0001-x
Lim, L.H.I., Ye, Z., Jiaying Ye, Yang, D., Du, H., 2015. A linear method to extract diode model parameters of solar panels from a single I–V curve. Renewable Energy 76, 135–142. http://dx.doi.org/10.1016/j.renene.2014.11.018 (IF:3.404)
Yang, D. §, Ye, Z., Nobre, A., Du, H., Walsh, W.M., Lim, L.H.I., Reindl, T., 2014. Bidirectional irradiance transposition based on the Perez model. Solar Energy 110, 768–780. https://doi.org/10.1016/j.solener.2014.10.006 (IF:3.469)
Liu, H., Nobre, A., Yang, D., Ye, J., Martins, F.R., Ruther, R., Reindl, T., Aberle A.G., Peters, I.M., 2014. The impact of haze on performance ratio and short-circuit current of PV systems in Singapore. IEEE Journal of Photovoltaics 4(6), 1585–1592. http://dx.doi.org/10.1109/JPHOTOV.2014.2346429 (IF:3.165)
Gu, C., Yang, D., Jirutitijaroen, P., Walsh, W.M., Reindl, T., 2014. Spatial load forecasting with communication failure using time–forward kriging. IEEE Transactions on Power Systems 29(6), 2875–2882. https://doi.org/10.1109/TPWRS.2014.2308537 (IF:2.814)
Yang, D. §, Walsh, W.M., Jirutitijaroen, P., 2014. Estimation and applications of clear sky global horizontal irradiance at the Equator. Journal of Solar Energy Engineering 136(3), 034505. https://doi.org/10.1115/1.4027263 (IF:1.614)
Yang, D. §, Dong, Z., Reindl, T., Jirutitijaroen, P., Walsh, W.M., 2014. Solar irradiance forecasting using spatio–temporal empirical kriging and vector autoregressive models with parameter shrinkage. Solar Energy 103, 550–562. https://doi.org/10.1016/j.solener.2014.01.024 (IF:3.469)
Khoo, Y.S., Nobre, A., Malhotra, R., Yang, D., Ruther, R., Reindl, T., Aberle, G., 2014. Optimal orientation and tilt angle for maximizing in–plane solar irradiance for PV applications in Singapore. IEEE Journal of Photovoltaics 4(2), 647-653. https://doi.org/10.1109/JPHOTOV.2013.2292743 (IF:3.165)
Dong, Z., Yang, D., Reindl, T., Walsh, W.M., 2014. Satellite image analysis and a hybrid ESSS/ANN model to forecast solar irradiance in the tropics. Energy Conversion and Management 79, 66–73. https://doi.org/10.1016/j.enconman.2013.11.043 (IF:4.380)
Yang, D.§, Gu, C., Dong, Z., Jirutitijaroen, P., Chen, N., Walsh, W.M., 2013. Solar irradiance forecasting using spatial–temporal covariance structures and time–forward kriging. Renewable Energy 60, 235–245. https://doi.org/10.1016/j.renene.2013.05.030 (IF:3.361)
Yang, D. §, Dong, Z., Nobre, A., Yong Sheng Khoo, Jirutitijaroen, P., Walsh, W.M., 2013. Evaluation of transposition and decomposition models for converting global solar irradiance from tilted surface to horizontal in tropical regions. Solar Energy 97, 369–387. https://doi.org/10.1016/j.solener.2013.08.033 (IF:3.541)
Dong, Z., Yang, D., Reindl, T., Walsh, W.M., 2013. Short–term solar irradiance forecasting using exponential smoothing state space model. Energy 55, 1104–1113. https://doi.org/10.1016/j.energy.2013.04.027 (IF:4.159)
Yang, D. §, Jirutitijaroen, P., Walsh, W.M., 2012. Hourly solar irradiance time series forecasting using cloud cover index. Solar Energy 86(12), 3531–3543. https://doi.org/10.1016/j.solener.2012.07.029 (IF:2.952)