个人简介
I'm currently Professor at Harbin Institute of Technology (Shenzhen). Before joining Harbin Institute of Technology (Shenzhen),
I worked as Assistant Professor (特聘研究员) at Beijing Computational Science Research Center, Visiting Assistant Professor
at Mississippi State University, and Postdoctoral Research Associate at Florida State University (postdoc mentor: Prof. Max Gunzburger). I obtained my PhD degree from City University of Hong Kong (PhD advisor: Prof. Weiwei Sun) .
Research Grants
深圳市新引进高精尖缺人才科研启动经费, Principal Investigator, 2023.01-2025.12
High-order accurate algorithms for shallow water models and numerical simulations of ocean currents
NSFC Key program, Co-Investigator, 2022.01-2026.12
(国家自然科学基金重点项目,参与)
Adaptive algorithms and theory for eigenvalue problems of partial differential equations
NSFC General program, Principal Investigator, 2021.01-2024.12
(国家自然科学基金面上项目,主持)
High-order accurate methods for viscous shallow water equations
国家青年人才计划入选者
研究领域
1. Numerical analysis and scientific computing for the following problems:
The magneto-hydrodynamic equations
The semilinear subdiffusion equation
The nonlinear Schrodinger equation
Incompressible flow in porous media
Shallow water equations on a sphere
Finite element method, convolution quadrature
2. Modelling, analysis, and computation of heat and sweat transport in fibrous media
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
X. Gui, B. Li, and J. Wang Improved error estimates for a modified exponential Euler method for the semilinear stochastic heat equation with rough initial data Sci. China Math., 2024, accepted
S. Ma, J. Wang, M. Zhang, and Z. Zhang Mass- and energy-conserving Gauss collocation methods for the nonlinear Schr?dinger equation with a wave operator Adv. Comput. Math., 2024, accepted
C. Wang, J. Wang, S.M. Wise, Z. Xia, and L. Xu Convergence analysis of a temporally second-order accurate finite element scheme for the Cahn-Hilliard-magnetohydrodynamics system of equations J. Comput. Appl. Math., 436 (2024), Paper No. 115409, 17 pp
W. Cai, W. Sun, J. Wang, and Z. Yang Optimal $L^2$ error estimates of unconditionally stable FE schemes for the Cahn-Hilliard-Navier-Stokes system SIAM J. Numer. Anal., 61 (2023), 1218-1245
T. Chu, J. Wang, N. Wang, and Z. Zhang Optimal-order convergence of a two-step BDF method for the Navier-Stokes equations with H1 initial data J. Sci. Comput., 96 (2023), Paper No. 62, 22 pp
C. Wang, J. Wang, Z. Xia, and L. Xu Optimal error estimates of a Crank-Nicolson finite element projection method for magnetohydrodynamic equations ESAIM Math. Model. Numer. Anal., 56 (2022), 767–789
M. Gunzburger, B. Li, J. Wang, and Z. Yang A mass conservative, well balanced, tangency preserving and energy decaying method for the shallow water equations on a sphere J. Comput. Phys., 457 (2022), article 111067
X. Gui, B. Li, and J. Wang Convergence of renormalized finite element methods for heat flow of harmonic maps SIAM J. Numer. Anal., 60 (2022), 312–338
G. Akrivis, B. Li, and J. Wang Convergence of a second-order energy-decaying method for the viscous rotating shallow water equation SIAM J. Numer. Anal., 59 (2021), 265–288
B. Li, H. Wang and J. Wang Well-posedness and numerical approximation of a fractional diffusion equation with a nonlinear variable order ESAIM Math. Model. Numer. Anal., 55 (2021), 171–207
J. Wang, J. Wang and L. Yin A Single-step correction scheme of Crank-Nicolson convolution quadrature for the subdiffusion equation J. Sci. Comput., 87 (2021), article 26
T. Sun, J. Wang and C. Zheng Fast evaluation of artificial boundary conditions for advection diffusion equations SIAM J. Numer. Anal., 58 (2020), 3530–3557
B. Li, J. Wang and L. Xu A convergent linearized Lagrange finite element method for the magneto-hydrodynamic equations in two-dimensional nonsmooth and nonconvex domains SIAM J. Numer. Anal., 58 (2020), 430–459
W. Cai, J. Wang and K. Wang Convergence analysis of Crank-Nicolson Galerkin-Galerkin FEMs for miscible displacement in porous media J. Sci. Comput., 83 (2020), Paper No. 25, 26 pp
M. Gunzburger and J. Wang Error analysis of fully discrete finite element approximations to an optimal control problem governed by a time-fractional PDE SIAM J. Control Optim., 57 (2019), 241-263
M. Gunzburger and J. Wang A second-order Crank-Nicolson scheme for time-fractional PDEs Int. J. Numer. Anal. & Model., 16 (2019), 225-239
M. Gunzburger, B. Li and J. Wang Convergence of finite element solutions of stochastic partial integro-differential equations driven by white noise Numer. Math., 141 (2019), 1043-1077
M. Gunzburger, B. Li and J. Wang Sharp convergence rates of time discretization for stochastic time-fractional PDEs subject to additive space-time white noise Math. Comp., 88 (2019), 1715–1741
J. Wang Unconditional stability and convergence of Crank-Nicolson Galerkin FEMs for a nonlinear Schr?dinger-Helmholtz system Numer. Math., 139 (2018), 479-503
D. Li, H. Liao, W. Sun, J. Wang and J. Zhang Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems Commun. Comput. Phys., 24 (2018), 86-103
D. Li, J. Wang and J. Zhang Unconditionally convergent L1-Galerkin FEMs for nonlinear time-fractional Schr?dinger equations SIAM J. Sci. Comput., 39 (2017), A3067-A3088
D. Li and J. Wang Unconditionally optimal error analysis of Crank-Nicolson Galerkin FEMs for a strongly nonlinear parabolic system J. Sci. Comput., 72 (2017), 892-915
W. Sun and J. Wang Optimal error analysis of Crank-Nicolson schemes for a coupled nonlinear Schr?dinger system in 3D J. Comput. Appl. Math., 317 (2017), 685-699
Z. Si, J. Wang and W. Sun Unconditional stability and error estimates of modified characteristics FEMs for the Navier-Stokes equations Numer. Math., 134 (2016), 139-161
J. Wang, Z. Si and W. Sun A new error analysis of characteristics-mixed FEMs for miscible displacement in porous media SIAM J. Numer. Anal., 52 (2014), 3000-3020
J. Wang A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schr?dinger equation J. Sci. Comput., 60 (2014), 390-407
J. Wang and W. Sun Heat and sweat transport in fibrous media with radiation European J. Appl. Math., 25 (2014), 307-327
B. Li, J. Wang and W. Sun The stability and convergence of fully discrete Galerkin-Galerkin FEMs for porous medium flows Commun. Comput. Phys., 15 (2014), 1141-1158