近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Tian J, Wang C, Xia J, Wu L, Xu G, Wu W, Li D, Qin W, Han X, Chen Q, Jin W and Tian F* (2019) Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science, 365(6454):658-664
Fu Y, Xu G, Chen H, Wang X, Chen Q, Huang C, Li D, Xu D, Tian J, Wu W, Lu S, Li C* and Tian F* (2019) QTL mapping for leaf morphology traits in a large maize-teosinte population. Molecular Breeding, 39(7): 103
Chen Q, Yang CJ, Alessandra Y, Xue W, Daskalska LL, DeValk CA, Krueger KW, Lawton SB, Spiegelberg BG, Schnell JM, Neumeyer MA, Perry JS, Peterson AC, Kim B, Bergstrom L, Yang L, Barber IC, Tian F and John F Doebley (2019) TeoNAM: a nested association mapping population for domestication and agronomic trait analysis in maize. Genetics, 213(3):1065-1078.
Xu G, Cao J, Wang X, Chen Q, Jin W, Li Z* and Tian F* (2019) Evolutionary metabolomics identifies substantial metabolic divergence between maize and its wild ancestor, teosinte. The Plant Cell, 31(9):1990-2009
Liang Y, Liu Q, Wang X, Huang C, Xu G, Hey S, Lin HY, Li C, Xu D, Wu L, Wang C, Wu W, Xia J, Han X, Lai J, Song W*, Schnable PS* and Tian F* (2019) ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation. New Phytologist, 221: 2335–2347
Guo L, Wang X, Zhao M, Huang C, Li C, Li D, Yang CJ, York AM, Xue W, Xu G, Liang Y, Chen Q, Doebley JF and Tian F* (2018) Stepwise cis-regulatory changes in ZCN8 contribute to maize flowering time adaptation. Current Biology,28, 3005–3015
Chen Q, Han Y, Liu H, Wang X, Sun J, Zhao B, Li W, Tian J, Liang Y, Yan J, Yang X* and Tian F* (2018) Genome-wide association analyses reveal the importance of alternative splicing in diversifying gene function and regulating phenotypic variation in maize. The Plant Cell, 30(7): 1404-1423
Huang C, Sun H, Xu D, Chen Q, Liang Y, Wang X, Xu G, Tian J, Wang C, Li D, Wu L, Yang X, Jin W, Doebley JF* and Tian F* (2018) ZmCCT9 enhances maize adaptation to higher latitudes. Proc Natl Acad Sci USA,115:E334-E341
Wang X, Chen Q, Wu Y, Lemmon ZH, Xu G, Huang C, Liang Y, Xu D, Li D, Doebley JF and Tian F* (2018) Genome-wide analysis of transcriptional variability in a large maize-teosinte population. Molecular Plant. 11:443–459.
Xu D, Wang X, Huang C, Xu G, Liang Y, Chen Q, Wang C, Li D, Tian J, Wu L, Wu Y, Guo L, Wang X, Wu W, Zhang W, Yang X, and Tian F* (2017). Glossy15 plays an important role in the divergence of the vegetative transition between maize and its progenitor, teosinte. Molecular Plant. 10(12):1579-1583.
Xu G, Wang X, Huang C, Xu D, Li D, Tian J, Chen Q, Wang C, Liang Y, Wu Y, Yang X and Tian F* (2017) Complex genetic architecture underlies maize tassel domestication. New Phytologist, 214: 852–864
Li D, Wang X, Zhang X, Chen Q, Xu G, Xu D, Wang C, Liang Y, Wu L, Huang C, Tian J, Wu Y and Tian F* (2016) The genetic architecture of leaf number and its genetic relationship to flowering time in maize. New Phytologist, 210:256-268
Richter A, Schaff C, Zhang Z, Lipka AE, Tian F, K?llner TG, Schnee C, Prei? S, Irmisch S, Jander G, Boland W, Gershenzon J, Buckler ES and Degenhardt J (2016) Characterization of biosynthetic pathways for the production of the volatile homoterpenes DMNT and TMTT in Zea mays. The Plant Cell, 28(10):2651-2665
Huang C, Chen Q, Xu G, Xu D, Tian J and Tian F* (2015) Identification and fine mapping of quantitative trait loci for the number of vascular bundle in maize stem. Journal of Integrative Plant Biology, 58:81-90.
Chen Q, Liu Z, Wang B, Wang X, Lai J and Tian F* (2015) Transcriptome sequencing reveals the roles of transcription factors in modulating genotype by nitrogen interaction in maize. Plant Cell Reports, 34(10):1761-1771.
Wang Q, Tian F*, Pan Y*, Buckler ES and Zhang Z* (2014) A SUPER powerful method for genome wide association study. PLoS ONE , 9:e107684.
Chen C, DeClerck G, Tian F, Spooner W, McCouch S and Buckler ES (2012) PICARA, an analytical pipeline providing probabilistic inference about a priori candidates genes underlying genome-wide association QTL in plants. PLoS ONE, 7: e46596.
Lipka AE, Tian F, Wang Q, Peiffer J, Le M, Bradbury PJ, Gore MA, Buckler ES and Zhang Z (2012) GAPIT: Genome Association and Prediction Integrated Tool. Bioinformatics, 28: 2397-2399.
Hung HY#, Shannon LM#, Tian F#, Bradbury PJ, Chen C, Flint-Garcia SA, McMullen MD, Ware D, Buckler ES, Doebley JF and Holland JB (2012) ZmCCT and the genetic basis of day-length adaptation underlying the post-domestication spread of maize. Proc Natl Acad Sci USA 109: E1913-1921. [#co-first author].
Li X, Zhu C, Yeh CT, Wu W, Takacs E, Petsch K, Tian F, Bai G, Buckler ES, Muehlbauer G, Timmermans M, Scanlon M, Schnable P and Yu J (2012) Genic and non-genic contributions to natural variation of quantitative traits in maize. Genome Research, 22(12): 2436–2444
Chia J-M, Song C, Bradbury PJ, Costich D, Leon N, Doebley J, Elshire RJ, Gaut B, Geller L, Glaubitz JG, Gore M, Guill KE, Holland J, Hufford MB, Lai JS, Li M, Liu X, Lu Y, McCombie R, Nelson R, Poland J, Prasanna BM, Pyh?j?rvi T, Rong TZ, Sekhon RS, Sun Q, Tenaillon MI, Tian F, Wang J, Xu X, Zhang ZW, Kaeppler SM, Ross-Ibarra J, McMullen MD, Buckler ES, Zhang G, Xu Y and Ware D (2012). Maize HapMap2 identifies extant variation from a genome in flux. Nature Genetics, 44: 803-807.
Cook JP, McMullen MD, Holland JB, Tian F, Bradbury P, Ross-Ibarra J, Buckler ES and Flint-Garcia SA (2011) Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiology, 158: 824-834
Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ, Myles S, Holland JB, Flint-Garcia S, McMullen MD, Buckler ES and Rocheford TR (2011) Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genetics, 7(11):e1002383
Tian F#, Bradbury PJ#, Brown PJ, Hsiaoyi H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB and Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nature Genetics 43:159-162. [#co-first author].
Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Villeda HS, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S and McMullen MD (2009) The genetic architecture of maize flowering time. Science, 325: 714-718
Tian F, Stevens NM and Buckler ES (2009) Tracking footprints of maize domestication and evidence for a massive selective sweep on chromosome 10. Proc Natl Acad Sci USA 106: 9979-9986
Luo X, Tian F, Fu Y, Yang J and Sun C (2009) Mapping quantitative trait loci influencing panicle-related traits from Chinese common wild rice (Oryza rufipogon) using introgression lines. Plant Breed. 128, 559-567.
Luo X, Fu Y, Zhang P, Wu S, Tian F, Liu J, Zhu Z, Yang J and Sun C (2009) Additive and over-dominant effects resulting from epistatic loci are the primary genetic basis of heterosis in rice. Journal of Integrative Plant Biology 51, 393-408.
Li X, Tian F, Huang H, Tan L, Zhu Z, Hu S and Sun C (2008) Construction of the physical map of the gpa7 locus reveals that a large segment was deleted during rice domestication. Plant Cell Reports 27: 1087-1092
Tian F, Zhu Z, Zhang B, Tan L, Fu Y, Wang X and Sun C (2006) Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Oryza rufipogon Griff.) Theor Appl Genet 113: 619-629
Tian F, Li D, Fu Q, Zhu Z, Fu Y, Wang X and Sun C (2006) Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (O. sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet 112:570-580
He G, Luo X, Tian F, Wang X, Li K, Zhu Z, Sun C and Yang J (2006) Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Research 16: 618-626
Zhou S, Tian F, Zhu Z, Fu Y, Wang X and Sun C (2006) Identification of quantitative trait loci controlling drought tolerance at seedling stage in Chinese Dongxiang common wild rice (Oryza rufipogon Griff.). Acta Genetica Sinica 33(6): 551-558