当前位置: X-MOL首页全球导师 国内导师 › 汪海

个人简介

汪海,教授、博士生导师。研究领域为作物智能设计,具体包括:(1)作物自然群体中微效有利等位变异的人工智能精准发掘和聚合;(2)作物转录调控区的人工智能设计和关键蛋白质的人工智能设计。以通讯或第一(含共同)作者身份在PNAS、Plant Cell、Molecular Plant等高影响力期刊发表论文14篇,均属于JCR分区Q1区。2017年入选“唐氏∙康奈尔—中国学者”项目。2019年11月以杰出人才身份入职中国农业大学,2020年9月入选中国农业大学“青年新星A类”人才培育计划。2021年9月入选农业农村部“农业科研杰出人才培养计划”。 教育经历 2006/09-2012/07,复旦大学,生命科学学院,植物生物化学与分子生物学专业,保送硕博连读 2011/03-2012/07,香港浸会大学,联合培养 2008/08-2011/03,美国Donald Danforth Plant Science Center,联合培养 2002/09-2006/07,复旦大学,生命科学学院,生物科学专业,本科 工作经历 2019/11-现在,中国农业大学农学院,教授 2017/11-2019/10,美国康奈尔大学,访问副教授 2016/01-2019/10,中国农科院生物技术研究所,副研究员 2012/07-2015/12,中国农科院生物技术研究所,助理研究员

研究领域

作物智能设计 1. 微效有利等位变异的人工智能精准发掘和聚合 学术界已克隆的大量玉米QTL中,只有极少数能够在主栽品种背景下提升农艺性状。这是因为能够克隆的QTL都是效应较大的QTL,它们大多已被早期育种家在骨干种质中优化并固定。如何发掘并聚合传统手段无法克隆的大量微效有利变异,是保障稳定遗传增益的关键。本团队综合机器学习和群体遗传学技术,系统发掘当代玉米主栽品种中的微效有利变异,并设计最优杂交选育路径聚合有利变异,为未来的玉米育种提供理论、技术和种质创新。 2. 转录调控区DNA序列和蛋白质序列的人工智能设计 传统育种的“原材料”局限于随机突变产生的自然变异,限制了作物改良的效率和潜力。本团队将机器学习和高通量分子生物学技术交叉融合,针对关键基因精准设计自然界不存在的优异等位变异,或对DNA元件和蛋白质序列进行从头设计,探索自然变异无法穷尽的无限变异空间;进而利用转基因和基因编辑技术写入作物基因组,改良关键农艺性状。基于人工智能的合成生物学将对传统育种形成重要补充。

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Sun G, Xia M, Li J, Ma W, Li Q, Xie J, Bai S, Fang S, Sun T, Feng X, Guo G, Niu Y, Hou J, Ye W, Ma J, Guo S, Wang H, Long Y, Zhang X, Zhang J, Zhou H, Li B, Liu J, Zou C, Wang H, Huang J, Galbraith DW, Song CP: The maize single-nucleus transcriptome comprehensively describes signaling networks governing movement and development of grass stomata. Plant Cell 2022. Huang Y, Huang W, Meng Z, Braz GT, Li Y, Wang K, Wang H, Lai J, Jiang J, Dong Z*, Jin W*: Megabase-scale presence-absence variation with Tripsacum origin was under selection during maize domestication and adaptation. Genome Biology 2021, 22(1):237. Song B#*, Buckler ES, Wang H, Wu Y, Rees E, Kellogg EA, Gates DJ, Khaipho-Burch M, Bradbury PJ, Ross-Ibarra J, Hufford MB, Romay MC: Conserved noncoding sequences provide insights into regulatory sequence and loss of gene expression in maize. Genome Research 2021. Wang H#*, Cimen E, Singh N, Buckler E: Deep learning for plant genomics and crop improvement. Current Opinion in Plant Biology 2020, 54:34-41. Liu J#, Li J, Wang H*, Yan J*: Application of deep learning in genomics. Science China Life Sciences 2020, 63(12):1860-1878. Wang B#, Lin Z#, Li X#, Zhao Y, Zhao B, Wu G, Ma X, Wang H, Xie Y, Li Q, Song G, Kong D, Zheng Z, Wei H, Shen R, Wu H, Chen C, Meng Z, Wang T, Li Y, Li X, Chen Y, Lai J, Hufford MB, Ross-Ibarra J, He H*, Wang H*: Genome-wide selection and genetic improvement during modern maize breeding. Nature Genetics 2020, 52(6):565-571. Xie S#, Luo H#, Huang Y, Wang Y, Ru W, Shi Y, Huang W, Wang H, Dong Z, Jin W*: A Missense Mutation in a Large Subunit of Ribonucleotide Reductase Confers Temperature-Gated Tassel Formation. Plant Physiology 2020, 184(4):1979-1997. Washburn JD#, Mejia-Guerra MK, Ramstein G, Kremling KA, Valluru R, Buckler ES*, Wang H#*: Evolutionarily informed deep learning methods for predicting relative transcript abundance from DNA sequence. PNAS 2019, 116(12):5542-5549. Wang H#*, Yan S#, Xin H, Huang W, Zhang H, Teng S, Yu YC, Fernie AR, Lu X, Li P, Li S, Zhang C, Ruan YL, Chen LQ*, Lang Z*: A Subsidiary Cell-Localized Glucose Transporter Promotes Stomatal Conductance and Photosynthesis. Plant Cell 2019, 31(6):1328-1343. Li S, Wang Z, Zhou Y, Li C, Wang G, Wang H, Zhang J, Liang G, Lang Z: Expression of cry2Ah1 and two domain II mutants in transgenic tobacco confers high resistance to susceptible and Cry1Ac-resistant cotton bollworm. Scientific Report 2018, 8(1):508. Xie Y#, Liu Y#, Wang H, Ma X, Wang B, Wu G, Wang H*: Phytochrome-interacting factors directly suppress MIR156 expression to enhance shade-avoidance syndrome in Arabidopsis. Nature Communication 2017, 8(1):348. Sun H, Zhou N, Wang H, Huang D, Lang Z: Processing and targeting of proteins derived from polyprotein with 2A and LP4/2A as peptide linkers in a maize expression system. PLoS One 2017, 12(3):e0174804. Liu Y#, Xie Y#, Wang H, Ma X, Yao W, Wang H: Light and Ethylene Coordinately Regulate the Phosphate Starvation Response through Transcriptional Regulation of PHOSPHATE STARVATION RESPONSE1. Plant Cell 2017, 29(9):2269-2284. Wang H#, Li S#, Teng S, Liang H, Xin H, Gao H, Huang D, Lang Z: Transcriptome profiling revealed novel transcriptional regulators in maize responses to Ostrinia furnacalis and jasmonic acid. PLoS One 2017, 12(5):e0177739. Wang H#, Wu G, Zhao B, Wang B, Lang Z, Zhang C, Wang H*: Regulatory modules controlling early shade avoidance response in maize seedlings. BMC Genomics 2016, 17:269. Pan YY, Chen R, Zhu L, Wang H, Huang DF, Lang ZH: Utilizing modified ubi1 introns to enhance exogenous gene expression in maize (Zea mays L.) and rice (Oryza sativa L.). Journal of Integrative Agriculture 2016, 15: 1716–1726 Wang H#, Wang H: The miR156/SPL Module, a Regulatory Hub and Versatile Toolbox, Gears up Crops for Enhanced Agronomic Traits. Molecular Plant 2015, 8(5):677-688. Wang H#, Wang H: Multifaceted roles of FHY3 and FAR1 in light signaling and beyond. Trends in Plant Science 2015, 20(7):453-461. Wang H#, Wang H: Phytochrome signaling: time to tighten up the loose ends. Molecular Plant 2015, 8(4):540-551. Li S#, Wang H#, Li F, Chen Z, Li X, Zhu L, Wang G, Yu J, Huang D, Lang Z: The maize transcription factor EREB58 mediates the jasmonate-induced production of sesquiterpene volatiles. Plant Journal 2015, 84(2):296-308. Liu P, Zhang H, Wang H, Xia Y: Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method. Proteomics 2014, 14(6):750-762. Wang H#, Lu Y, Liu P, Wen W, Zhang J, Ge X, Xia Y: The ammonium/nitrate ratio is an input signal in the temperature-modulated, SNC1-mediated and EDS1-dependent autoimmunity of nudt6-2 nudt7. Plant Journal 2013, 73(2):262-275. Wang H#, Lu Y#, Jiang T, Berg H, Li C, Xia Y: The Arabidopsis U-box/ARM repeat E3 ligase AtPUB4 influences growth and degeneration of tapetal cells, and its mutation leads to conditional male sterility. Plant Journal 2013, 74(3):511-523. Wang H#, Wang S, Xia Y: Identification and verification of redox-sensitive proteins in Arabidopsis thaliana. Methods in Molecular Biology 2012, 876:83-94. (Book Chapter) Wang H#, Wang S, Lu Y, Alvarez S, Hicks LM, Ge X, Xia Y: Proteomic analysis of early-responsive redox-sensitive proteins in Arabidopsis. Journal of Proteome Research 2012, 11(1):412-424. Wang H#, Liang Q, Cao K, Ge X: Endogenous protein mono-ADP-ribosylation in Arabidopsis thaliana. Planta 2011, 233(6):1287-1292. Lu Y, Li C, Wang H, Chen H, Berg H, Xia Y: AtPPR2, an Arabidopsis pentatricopeptide repeat protein, binds to plastid 23S rRNA and plays an important role in the first mitotic division during gametogenesis and in cell proliferation during embryogenesis. Plant Journal 2011, 67(1):13-25. Wang X, Wang H, Li Y, Cao K, Ge X: A rice lipid transfer protein binds to plasma membrane proteinaceous sites. Molecular Biology Reports 2009, 36(4):745-750. Ge X, Wang H, Cao K: Transformation by T-DNA integration causes highly sterile phenotype independent of transgenes in Arabidopsis thaliana. Plant Cell Reports 2008, 27(8):1341-1348.

学术兼职

在期刊《Frontiers in Artificial Intelligence》担任Review Editor

推荐链接
down
wechat
bug