当前位置: X-MOL首页全球导师 国内导师 › 张宝昌

个人简介

2018年进入北航长聘系列,长期从事复杂背景下快速小目标检测与识别研究,目前尤其关注控制理论和深度学习的结合。证明了混合高斯波函数的不确定性上界,发表在顶刊IJCV(领域第一11.54);提出局部模式构建的一系列的原创模型。获得两项视觉顶会ECCV20目标检测比赛第一名,一项权威会议ICPR20比赛的第一名。入选教育部新世纪优秀人才计划、深圳市孔雀团队海外人才计划,获中国电子学会奖2项(1项第一),陕西省自然科学奖一等1项(排名第二)。 成果1:提出多高斯不确定性理论。国际上首次证明混合高斯波函数的不确定性上界,是经典理论的一般性扩展。相关论文一作发表于视觉领域顶刊IJCV,2016年大陆学者一作正刊仅有6篇。 成果2:独立提出调制卷积神经网络,在深度模型压缩方面理论与工程实现处于领先位置;在1-bit深度模型压缩方面在大型数据集合上取得世界上最好的性能,并进行推广。 成果3:发现了梯度下降算法的多变量独立假设存在理论缺陷,由于变量上约束不同(稀疏性),导致了不同变量收敛速度的不一致性,即存在相关性。提出了协同梯度下降算法(CoGradient Descent,CVPR2020),引入投影映射法协同不同变量间的收敛速度,实现更加充分的训练。 教育经历 哈尔滨工业大学 计算机科学与技术 本硕博 工作经历 2006.11 -- 2007.11 香港中文大学 IE researcher Focusing on face recognition 2007.11 -- 2008.11 格里菲斯大学 Griffith fellow focusing on feature learning 2011.3 -- 2011.12 香港理工大学 visting fellow focusing on infrared face recognition 2014.1 -- 2015.3 意大利理工学院 PAVIS Senior Postdoc focusing on machine learning 社会兼职 2019.6 -- 2020.6 百度深度学习实验室学术顾问 Academic Advisor of Institute of Deep Learning, Baidu Research

研究领域

神经网络结构搜索,尤其关注功耗约束、通讯带宽约束的网络结构设计 深度学习模型压缩;视觉目标检测与识别,尤其关注小目标感知;视频识别;机器学习理论与应用

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Z. Han, J. Jiao, B. Zhang, Q. Ye, Visual object tracking via sample-based Adaptive Sparse Representation (AdaSR), Pattern recognition, 2011.( SCI) (IF=4.582) R. Xu, J. Jiao, B. Zhang, pedestrian detection from images based on Cascaded L1-norm minimization learning, Pattern recognition, 2012.( SCI) (IF=4.582) Jie Xu, Yuan Yan Tang, Bin Zou, Zongben Xu, Luoqing Li, Yang Lu, Baochang Zhang: The Generalization Ability of SVM Classification Based on Markov Sampling. IEEE Transactions cybernetics 45(6): 1169-1179 (2015) (SCI) (IF=7.384) B. Zhang, Y. Gao, S. Zhao and B. Zhong, “Kernel Similarity Modeling of Texture Pattern Flow for Motion Detection in Complex Background”, IEEE Transactions on Circuits and Systems for Video Technology, 2010. (SCI) (IF=3.599) Lei Wang, Baochang Zhang*, Wankou Yang:Boosting-Like Deep Convolutional Network for Pedestrian Detection. Signal processing and image communication, 2016. (SCI) (IF=2.244) Changqing Zou, Tianfan Xue, Xiaojiang Peng, Honghua Li, Baochang Zhang*, Ping Tan,Jianzhuang Liu:An example-based approach to 3D man-made object reconstruction from line drawings. Pattern Recognition 60: 543-553 (2016) (SCI) (IF=4.582) Baochang Zhang, Z. Li, X. Cao, Qixiang Ye, C. Chen, L. Shen, A. Perina, and R. Ji,"Output Constraint Transfer for Kernelized Correlation Filter in Tracking," IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, Digital Object Identifier 10.1109/TSMC.2016.2629509. (SCI) Chunlei Liu, Wenrui Ding, Xiaodi Wang, Baochang Zhang: Hybrid Gabor Convolutional Networks. Pattern Recognition Letters 116: 164-169 (2018) Baochang Zhang, Zhigang Li, Alessandro Perina, Alessio Del Bue, Vittorio Murino: Adaptive Local Movement Modelling for Object Tracking. IEEE Transactions on Circuits and Systems for Video Technology. 2017. (IF=3.599) Juning Liu, Xianbin Cao, Yan Li, Baochang Zhang, Online Multi-Object Tracking Using Hierarchical Constraints for Complex Scenarios, IEEE Transactions on Intelligent Transportation Systems, 2017. SCI IF=3.72. Shuman Tian, Xianbin Cao, Yan Li, Xiantong Zhen, Baochang Zhang, Glance and Stare: Trapping Flying Birds in Aerial Videos by Adaptive Deep Spatio-Temporal Features, IEEE Trans. on Circuits and Systems for Video Technology. 2017. (IF=3.599) Baochang Zhang, Shang Zhen Luan, Chen Chen, Jungong Han, Ling Shao, Latent Constrained Correlation Filter,IEEE Transactions on Image Processing, 2017. (IF=5.071) Highly Cited Papers Baochang Zhang, Yun Yang, Chen Chen, Jungong Han, Ling Shao, Action Recognition Using 3D Histograms of Texture and A Multi-class Boosting Classifier, IEEE Transactions on Image Processing, 26(10) ,2017. (IF=5.071) Highly Cited Papers Baochang Zhang, A. Perina, Ce Li, Q. Ye, Vittorio Murio, A. del bue, Manifold constraint transfer for visual structure-driven optimization, Pattern Recognition, 2018. (IF=4.582) Ce Li, Chunyu Xie, Baochang Zhang*, Chen Chen, Jungong Han. Deep Fisher discriminant learning for mobile hand gesture recognition, Pattern Recognition, 2018. L. Yang, Ce Li, J. Han, C. Chen, Q. Ye, Baochang Zhang*, Xianbin Cao, Wanquan Liu, Manifold Constrained Convolutional Sparse Coding for Image Sets, IEEE Journal of Selected Topics in Signal Processing, 2017. (IF=5.3). Linlin Yang, Ce Li, Chunyu Xie, Linna Wang, Baochang Zhang:Adaptive multiclass correlation filters and its applications in the time series recognition. J. Electronic Imaging 27(03): 033010 (2018) Jiewan Zheng, Xianbin Cao, Baochang Zhang, Xiantong Zheng, Deep Ensemble Machine for Video Classi?cation, IEEE Trans. Neural Network and Learning System. 2019. Baochang Zhang, Jiaxin Gu, Chen Chen, Jungong Han, Xiangbo Su, Jianzhuang Liu, One-Two-One network for Compression Artifacts Reduction in Remote Sensing, ISPRS Journal of Photogrammetry and Remote Sensing, 2018. (IF=6.387). Highly Cited Papers Shangzhen Luan, Chen Chen, Baochang Zhang, Jungong Han, Jianzhuang Liu: Gabor Convolutional Networks. IEEE Trans. Image Processing 27(9): 4357-4366 (2018) Highly Cited Papers Baochang Zhang, Y. Gao, S. Zhao and J. Liu, “Local Derivative Pattern versus Local Binary Pattern: Face Recognition with High-Order Local Pattern Descriptor”, IEEE Transactions on Image Processing, Vol. 19, No. 2, pp. 533-544, 2010. 830 citation Google scholar(IF=5.071) Highly Cited Papers Baochang Zhang, Shiguang Shan, Xilin Chen, Wen Gao. Histogram of Gabor Phase Patterns: A novel object representation for face recognition. IEEE Transactions on Image Processing, 2007. ESI 630 citation Google scholar (IF=5.071) Highly Cited Papers Baochang Zhang, W. Liu, Z. Mao, Cooperative and Geometric Learning for path planning of UAV, Automatica, 2014. (IF=5.451) Chunyu Xie, Ce Li, Baochang Zhang*, Lili Pan, Qixiang Ye, Wei Chen: Hierarchical residual stochastic networks for time series recognition. Inf. Sci. 471: 52-63 (2019) Hainan Wang, Yunqi Miao, Hongren Wang, Baochang Zhang: Convolutional Attention in Ensemble With Knowledge Transferred for Remote Sensing Image Classification. IEEE Geosci. Remote Sensing Lett. 16(4): 643-647 (2019) Yufeng Wang, Wenrui Ding, Baochang Zhang, Hongguang Li, Shuo Liu Superpixel Labeling Priors and MRF for Aerial Video Segmentation, IEEE Transactions on Circuits and Systems for Video Technology, 2019. Yuanjun Huang, Xianbin Cao, Qi Wang, Baochang Zhang, Xiantong Zhen, Xuelong Li: Long-Short-Term Features for Dynamic Scene Classification. IEEE Trans. Circuits Syst. Video Techn. 29(4): 1038-1047 (2019) Gengshen Wu, Jungong Han, Zijia Lin, Guiguang Ding, Baochang Zhang*, and Qiang Ni, Joint Image-Text Hashing for Fast Large-Scale Cross-Media Retrieval Using Self-Supervised Deep Learning, IEEE Transactions on Industrial Electronics, 2019 (IF=7.05) Peicheng Zhou, Junwei Han, Gong Cheng, Baochang Zhang. Learning compact and discriminative stacked autoencoder for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, in press, 2019. (IF=4.662) Ce Li, Baochang Zhang*, Chen Chen, Jungong Han, Qixiang Ye, Rongrong Ji, Guodong Guo, Deep Manifold Structure Transfer for Action Recognition, IEEE Transactions on Image Processing, 2019. (IF=5.071) Baochang Zhang, Alessandro Perina, Zhigang Li, Vittorio Murino, Jianzhuang Liu, Rongrong Ji, Bounding Multiple Gaussians Uncertainty with Application to Object Tracking, International Journal of Computer Vision, 2016. (IF=11.5222) B. Zhang, X. Chen, Shiguang Shan, Wen Gao. Nonlinear Face Recognition based on Maximum Average Margin Criterion. in proc. of CVPR, 2005. Top Conference R. Xu, B. Zhang, Qixiang, Ye, Jianbin Jiao. Cascaded L1-norm Minimization Learning (CLML) Classifier for Human Detection. in proc. of CVPR, 2010.( Top Conference) Top Conference Linlin Yang, Dandan Du, Baochang Zhang, Wankou Yang:A Panoramic Video System Based on Exposure Adjustment and Non-linear Fusion. CCBR 2015: 499-507 Baochang Zhang, Alessandro Perina, Vittorio Murino, Alessio Del Bue:Sparse representation classification with manifold constraints transfer. CVPR 2015: 4557-4565(Top Conference) Top Conference Linlin Yang, Chen Chen, Hainan Wang, Baochang Zhang*, Jungong Han:Adaptive Multi-class Correlation Filters. PCM (2) 2016: 680-688 Chunyu Xie, Shangzhen Luan, Hainan Wang, Baochang Zhang*: Gesture Recognition Benchmark Based on Mobile Phone. CCBR 2016: 432-440 Chen Chen, Baochang Zhang*, Alessio Del Bue, Vittorio Murino: Manifold Constrained Low-Rank Decomposition. ICCV Workshops 2017: 1800-1808 Chen Chen, Mengyuan Liu, Baochang Zhang*, Jungong Han, Junjun Jiang, Hong Liu:3D Action Recognition Using Multi-Temporal Depth Motion Maps and Fisher Vector. IJCAI 2016: 3331-3337 (Top Conference) Top Conference Q. Ye, Z. Zhang, Q. Qiu, J. Chen, G. Sapiro, B. Zhang, Self-learning Scene-specific Pedestrian Detectors using a Progressive Latent Model, in Proc. of IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR), 2017. Top Conference Hong Liu, Rongrong Ji, Yongjian Wu, Feiyue Huang and Baochang Zhang, Cross-Modality Binary Code Learning via Fusion Similarity Hashing, IEEE Conference on Computer Vision and Pattern Recognition(CVPR) 2017. Top Conference Shangzhen Luan, Baochang Zhang, Siyue Zhou, Chen Chen, Jungong Han, Wankou Yang, Jianzhuang Liu: Gabor Convolutional Networks. WACV 2018: 1254-1262 Gengshen Wu, Zijia Lin, Jungong Han, Li Liu, Guiguang Ding, Baochang Zhang, Jialie Shen: Unsupervised Deep Hashing via Binary Latent Factor Models for Large-scale Cross-modal Retrieval. IJCAI 2018: 2854-2860 Top Conference Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu, Feiyue Huang, Baochang Zhang: Accelerating Convolutional Networks via Global & Dynamic Filter Pruning. IJCAI 2018: 2425-2432 Top Conference Chunyu Xie, Ce Li, Baochang Zhang*, Chen Chen, Jungong Han, Jianzhuang Liu: Memory Attention Networks for Skeleton-based Action Recognition. IJCAI 2018: 1639-1645 Top Conference Xiaodi Wang, Baochang Zhang*, Ce Li, Rongrong Ji, Jungong Han, Xianbin Cao, Jianzhuang Liu: Modulated Convolutional Networks. CVPR 2018: 840-848 Top Conference Lei Yue, Xin Miao, Pengbo Wang, Baochang Zhang, Xiantong Zhen, Xianbin Cao: Attentional Alignment Networks. BMVC 2018: 208 Xiaolong Jiang, Xiantong Zhen, Baochang Zhang, Jian Yang, Xianbin Cao: Deep Collaborative Tracking Networks. BMVC 2018: 87 Mohamed A. Kassab, Ali Maher, Fathy Elkazzaz and Zhang Baochang*, UAV Target Tracking By Detection Via Deep Neural Networks, ICME 2019 Xingchao Liu, Ce Li, Hongren Wang, Xiantong Zhen, Baochang Zhang*, Qixiang Ye: Starts Better and Ends Better: A Target Adaptive Image Signature Tracker. WACV 2019: 171-178 Xiaodi Wang, Ce Li, Yipeng Mou, Baochang Zhang*, Jungong Han, Jianzhuang Liu: Taylor Convolutional Networks for Image Classification. WACV 2019: 1271-1279 Li’an Zhuo, Baochang Zhang*, Chen Chen, David Doermann. Calibration Stochastic Gradient Descent for Convolutional Neural Network, AAAI 2019. Top Conference Jiaxin Gu, Ce Li, Baochang Zhang*, Jungong Han, David Doermann. Projection Convolutional Neural Network, AAAI 2019. Top Conference Xiawu Zheng , Rongrong Ji , Xiaoshuai Sun, Baochang Zhang, Yongjian Wu,Yunsheng Wu,Towards Optimal Fine Grained Retrieval via Decorrelated Centralized Loss with Normalize-Scale layer, AAAI 2019. Top Conference Taisong Jin, Liujuan Cao , Baochang Zhang, Xiaoshuai Sun, Cheng Deng, Rongrong Ji Hypergraph Induced Convolutional Manifold NetworksI International Joint Conferences on Artificial Intelligence IJCAI 2019 Top Conference Hong Chen, Yongtan Luo, Liujuan Cao, Baochang Zhang, Guodong Guo, Cheng Wang, Jonathan Li, Rongrong Ji ,Generalized Zero-Shot Vehicle Detection in Remote Sensing Imagery via Coarse-to-Fine Framework, International Joint Conferences on Artificial Intelligence IJCAI 2019 Top Conference Chunlei Liu, Wenrui Ding, Xin Xia, Yuan Hu, Baochang Zhang*, Jianzhuang Liu, Bohan Zhuang, Guodong Guo, Rectified Binary Convolutional Networks for Enhancing the Performance of 1-bit DCNNs, International Joint Conferences on Artificial Intelligence IJCAI 2019 Top Conference Xiaolong Jiang, Zehao Xiao, Baochang Zhang, Xiantong Zhen, Xianbin Cao, David Doermann5, Ling Shao4 ,Crowd Counting and Density Estimation by Trellis Encoder-Decoder Networks, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019. Top Conference Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang, Liujuan Cao, Qixiang Ye, Feiyue Huang, David Doermann. Towards Optimal Structured CNN Pruning via Generative Adversarial Learning. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019. Top Conference Yuchao Li, Shaohui Lin, Baochang Zhang, Jianzhuang Liu, David Doermann, Yongjian Wu, Feiyue Huang, Rongrong Ji. Exploiting Kernel Sparsity and Entropy for Interpretable CNN Compression. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019. Top Conference Chunlei Liu, Wenrui Ding, Xin Xia, Baochang Zhang*, Jiaxin Gu, Jianzhuang Liu, Rongrong Ji, David Doermann, Circulant Binary Convolutional Networks: Enhancing the Performance of 1-bit DCNNs with Circulant Back Propagation. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2019. Top Conference

推荐链接
down
wechat
bug