当前位置: X-MOL首页全球导师 国内导师 › 张光磊

个人简介

张光磊,男,北京航空航天大学计划特聘副研究员,生物医学工程高精尖创新中心研究员,博士生导师。2010-2014年在清华大学医学院生物医学工程专业攻读博士学位,2015-2016年在美国斯坦福大学(Stanford University)医学院进行博士后研究工作。2017-2018年任北京交通大学医学智能研究所副教授、副所长。2018年入职北京航空航天大学生物与医学工程学院,获批北航“青年拔尖人才计划”。现任IEEE member、中国生物医学工程学会会员、生物医学光子学分会会员、医学物理分会青年委员、中国图象图形学会会员、中国光学工程学会高级会员。担任Frontiers in Oncology、Frontiers in Neuroscience等杂志编委。 “智能医学实验室”依托北京航空航天大学生物医学工程高精尖中心建立,实验室负责人为张光磊研究员。“智能医学实验室”研究方向包括:光学分子影像三维成像方法、医学影像人工智能分析方法、医学智能可穿戴式诊断设备。“智能医学实验室”科研成果包括:在科研论文方面,在ACS Nano, Nano Energy, IEEE Trans. Med. Imag, IEEE Trans. Biomed. Eng., IEEE J. Biomed. Health Inform., Opt. Lett., Biomed. Opt. Express, Med. Phys., Phys. Med. Biol.等期刊上发表六十余篇论文;在专利软著方面,申请国家发明专利十余项,病理图像AI分析软著一项;在科研项目方面,承担国家自然科学基金、北京市自然科学基金、科技部国家重点研发计划等基金项目。 教育经历 2010.9 -- 2014.7 清华大学 生物医学工程 博士研究生毕业 博士 2004.9 -- 2007.4 西北工业大学 生物医学工程 硕士研究生毕业 硕士 2000.9 -- 2004.7 西北工业大学 生物医学工程 大学本科毕业 学士 工作经历 2022.1 -- 至今 北京航空航天大学 生物与医学工程学院 特聘副研究员 2018.3 -- 2021.12 北京航空航天大学 医工交叉创新研究院 特聘副研究员 2017.3 -- 2018.3 北京交通大学 医学智能研究所 副所长 副教授 2015.10 -- 2016.10 美国斯坦福大学(Stanford University) 博士后 2014.7 -- 2017.3 北京交通大学 计算机与信息技术学院 博士后 2007.4 -- 2010.8 深圳迈瑞生物医疗电子股份有限公司 资深工程师 社会兼职 IEEE Member 中国生物医学工程学会会员 生物医学光子学分会会员 医学物理分会青年委员 中国图象图形学会会员 中国光学工程学会高级会员

研究领域

光学分子影像三维成像方法(荧光分子断层成像-FMT、X射线激发荧光分子断层成像-XLCT等) 医学影像人工智能分析方法(利用机器学习、深度学习等技术对CT、MRI等医学影像进行智能分析) 医学智能可穿戴式诊疗设备(可穿戴式心电、血压、血氧、血糖、呼吸、体温等人体基本生理参数检测设备研究)

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

W. Yan, C. Ma, X. Cai, Y. Sun, G. Zhang*, and W. Song*, “Self-powered and wireless physiological monitoring system with integrated power supply and sensors,” Nano Energy, 2023, 108, 108203. (SCI, Q1, IF=19.069) X. Zhao, P. Zhang, F. Song, C. Ma, G. Fan, Y. Sun, Y. Feng, and G. Zhang*, “Prior attention network for multi-lesion segmentation in medical images,” IEEE Trans. Med. Imag., 2022, 41(12): 3812–3823. (SCI, IF=11.037) X. Zhang, X. Cao, P. Zhang, F. Song, J. Zhang, L. Zhang, and G. Zhang*, “Self-training strategy based on finite element method for adaptive bioluminescence tomography reconstruction,” IEEE Trans. Med. Imag., 2022, 41(10): 2629–2643. (SCI, IF=11.037) T. Zhang, Y. Feng, Y. Zhao, G. Fan, A. Yang, S. Lyu, P. Zhang, F. Song, C. Ma, Y. Sun, Y. Feng, and G. Zhang*, “MSHT: Multi-stage hybrid transformer for the ROSE image analysis of pancreatic cancer,” IEEE J. Biomed. Health Inform., 2023, in press. (SCI, Q1, IF=7.021) C. Ma, P. Zhang, F. Song, Y. Sun, G. Fan, T. Zhang, Y. Feng, and G. Zhang*, “KD-Informer: cuff-less continuous blood pressure waveform estimation approach based on single photoplethysmography,” IEEE J. Biomed. Health Inform., 2022, in press. (SCI, IF=7.021) P. Zhang, G. Fan, T. Xing, F. Song, and G. Zhang*, “UHR-DeepFMT: Ultra-high spatial resolution reconstruction of fluorescence molecular tomography based on 3D fusion dual-sampling deep neural network,” IEEE Trans. Med. Imag., 2021, 40(11): 3217–3228. (SCI, IF=11.037) L. Guo, F. Liu, C. Cai, J. Liu, and G. Zhang*, “3D deep encoder-decoder network for fluorescence molecular tomography,” Opt. Lett., 2019, 44(8): 1892–1895. (SCI, IF=3.560) G. Zhang*, S. Tzoumas, K. Cheng, F. Liu, J. Liu, J. Luo, J. Bai, and L. Xing, “Generalized adaptive Gaussian Markov random field for X-ray luminescence computed tomography,” IEEE Trans. Biomed. Eng., 2018, 65(9): 2130–2133. (SCI, IF=4.756) G. Zhang*, F. Liu, J. Liu, J. Luo, Y. Xie, J. Bai, and L. Xing, “Cone beam X-ray luminescence computed tomography based on Bayesian method,” IEEE Trans. Med. Imag., 2017, 36(1): 225–235. (SCI, IF=11.037) G. Zhang, H. Pu, W. He, F. Liu, J. Luo, and J. Bai, “Bayesian framework based direct reconstruction of fluorescence parametric images,” IEEE Trans. Med. Imag., 2015, 34(6): 1378–1391. (SCI, IF=11.037) 科研论文 W. Yan, C. Ma, X. Cai, Y. Sun, G. Zhang*, and W. Song*, “Self-powered and wireless physiological monitoring system with integrated power supply and sensors,” Nano Energy, 2023, 108, 108203. (SCI, Q1, IF=19.069) P. Zhang, F. Song, C. Ma, Z. Liu, H. Wu, Y. Sun, Y. Feng, Y. He, and G. Zhang*, “Robust reconstruction of fluorescence molecular tomography based on adaptive adversarial learning strategy,” Phys. Med. Biol., 2023, in press. (SCI, Q2, IF=4.174) P. Zhang, C. Ma, F. Song, Y. Sun, Y. Feng, Y. He, T. Zhang, and G. Zhang*, “D2AFNet: A dual-domain attention cascade network for accurate and interpretable atrial fibrillation detection,” Biomed. Signal Process. Control, 2023, 82, 104615. (SCI, Q2, IF=5.076) F. Song, X. Song, Y. Feng, G. Fan, Y. Sun, P. Zhang, J. Li, F. Liu, and G. Zhang*, “Radiomics feature analysis and model research for predicting histopathological subtypes of non-small cell lung cancer: a multi-dataset study,” Med. Phys., 2023, in press. (SCI, Q2, IF=4.506) T. Zhang, Y. Feng, Y. Zhao, G. Fan, A. Yang, S. Lyu, P. Zhang, F. Song, C. Ma, Y. Sun, Y. Feng, and G. Zhang*, “MSHT: Multi-stage hybrid transformer for the ROSE image analysis of pancreatic cancer,” IEEE J. Biomed. Health Inform., 2023, in press. (SCI, Q1, IF=7.021) X. Zhang, J. Cui, Y. Jia, P. Zhang, F. Song, X. Cao, J. Zhang, L. Zhang, G. Zhang*, “Image restoration for blurry optical images caused by photon diffusion with deep learning,” J. Opt. Soc. Am. A, 2023, 40(1): 96–107. (SCI, Q3, IF=2.104) P. Zhang, C. Ma, F. Song, T. Zhang, Y. Sun, Y. Feng, Y. He, F. Liu, D. Wang, and G. Zhang*, “Dual-domain joint reconstruction strategy for fluorescence molecular tomography based on image domain and perception domain,” Comput. Meth. Programs Biomed., 2023, 229, 107293. (SCI, Q1, IF=7.027) C. Ma, P. Zhang, F. Song, Y. Sun, G. Fan, T. Zhang, Y. Feng, and G. Zhang*, “KD-Informer: cuff-less continuous blood pressure waveform estimation approach based on single photoplethysmography,” IEEE J. Biomed. Health Inform., 2022, in press. (SCI, Q1, IF=7.021) X. Zhao, P. Zhang, F. Song, C. Ma, G. Fan, Y. Sun, Y. Feng, and G. Zhang*, “Prior attention network for multi-lesion segmentation in medical images,” IEEE Trans. Med. Imag., 2022, 41(12): 3812–3823. (SCI, Q1, IF=11.037) P. Zhang, C. Ma, F. Song, Z. Liu, Y. Feng, Y. Sun, Y. He, F. Liu, D. Wang, and G. Zhang*, “Multi-branch attention prior based parameterized generative adversarial network for fast and accurate limited-projection reconstruction in fluorescence molecular tomography,” Biomed. Opt. Express, 2022, 13(10): 5327–5343. (SCI, Q2, IF=3.562) F. Liu, P. Zhang, Z. Liu, F. Song, C. Ma, Y. Sun, Y. Feng, Y. He, and G. Zhang*, “In vivo accurate detection of the liver tumor with pharmacokinetic parametric images from dynamic fluorescence molecular tomography,” J. Biomed. Opt., 2022, 27(7): 070501. (SCI, Q2, IF=3.582) 麻琛彬, 张鹏, 宋凡, 孙洋洋, 张光磊*, “基于光电容积脉搏波的无袖带血压测量技术研究进展,” 北京生物医学工程, 2022, in press. X. Zhang, X. Cao, P. Zhang, F. Song, J. Zhang, L. Zhang, and G. Zhang*, “Self-training strategy based on finite element method for adaptive bioluminescence tomography reconstruction,” IEEE Trans. Med. Imag., 2022, 41(10): 2629–2643. (SCI, Q1, IF=11.037) J. Li, F. Song, P. Zhang, C. Ma, T. Zhang, Y. Sun, Y. Feng, X. Song, S. Lyu, and G. Zhang*, “A multi-classification model for non-small cell lung cancer subtypes based on independent subtask learning,” Med. Phys., 2022, 49: 6969–6974. (SCI, Q2, IF=4.506) P. Zhang, C. Ma, F. Song, G. Fan, Y. Sun, Y. Feng, X. Ma, F. Liu, and G. Zhang*, “A review of advances in imaging methodology in fluorescence molecular tomography,” Phys. Med. Biol., 2022, 67: 10TR01. (SCI, Q2, IF=4.174) Y. Feng, F. Song, P. Zhang, G. Fan, T. Zhang, X. Zhao, C. Ma, Y. Sun, X. Song, H. Pu, F. Liu, and G. Zhang*, “Prediction of EGFR mutation status in non-small cell lung cancer based on ensemble learning,” Front. Pharmaco., 2022,13: 897597. (SCI, Q1, IF=5.988) F. Song, L. Song, T. Xing, X. Song, P. Zhang, Y. Feng, Z. Zhu, W. Song, and G. Zhang*, “A multi-classification model for predicting the invasiveness of lung adenocarcinoma presenting as pure ground-glass nodules,” Front. Oncol., 2022, 12: 800811. (SCI, Q2, IF=5.738) G. Zhang*, X. Chen, S. Wang, J. Li, and X. Cao, “Editorial: Optical Molecular Imaging in Cancer Research,” Front. Oncol., 2022, 12: 870583. (SCI, Q2, IF=5.738) P. Zhang, G. Fan, T. Xing, F. Song, and G. Zhang*, “UHR-DeepFMT: Ultra-high spatial resolution reconstruction of fluorescence molecular tomography based on 3D fusion dual-sampling deep neural network,” IEEE Trans. Med. Imag., 2021, 40(11): 3217–3228. (SCI, Q1, IF=11.037) P. Zhang, C. Ma, Y. Sun, G. Fan, F. Song, Y. Feng, and G. Zhang*, “Global hybrid multi-scale convolutional network for accurate and robust detection of atrial fibrillation using single-lead ECG recordings,” Comput. Biol. Med., 2021, 139: 104880. (SCI, Q1, IF=6.698) X. Zhao, P. Zhang, F. Song, G. Fan, Y. Sun, Y. Wang, Z. Tian, L. Zhang, and G. Zhang*, “D2A U-Net: Automatic segmentation of COVID-19 CT slices based on dual attention and hybrid dilated convolution,” Comput. Biol. Med., 2021, 135: 104526. (SCI, Q1, IF=6.698) Y. Gao, F. Song, P. Zhang, J. Liu, J. Cui, Y. Ma, G. Zhang*, and J. Luo, “Improving the subtype classification of non-small cell lung cancer by elastic deformation based machine learning,” J. Digit. Imaging, 2021, 34: 605–617. (SCI, Q2, IF=4.903) L. Song, T. Xing, Z. Zhu, W. Han, G. Fan, J. Li, H. Du, W. Song, Z. Jin, and G. Zhang, “Hybrid clinical-radiomics model for precisely predicting the invasiveness of lung adenocarcinoma manifesting as pure ground-glass nodule,” Acad. Radiol., 2021, 28(9): e267–e277. (SCI, Q1, IF=5.482) R. Liu, Z. Cai, Q. Zhang, H. Yuan, G. Zhang, and D. Yang, “Colorimetric two-dimensional photonic crystal biosensors for label-free detection of hydrogen peroxide,” Sens. Actuators B., 2021, 354:131236. (SCI, Q1, IF=9.221) R. Zhao, D. Wu, J. Wen, Q. Zhang, G. Zhang, and J. Li, “Robustness and accuracy improvement of data processing with 2D neural networks for transient absorption dynamics,” Phys. Chem. Chem. Phys., 2021, 23: 16998-17008. (SCI, Q1, IF=3.945) W. Cai, Y. Chen, J. Guo, B. Han, Y.Shi, L. Ji, J. Wang, G. Zhang*, and J. Luo, “Accurate detection of atrial fibrillation from 12-Lead ECG using deep neural network,” Comput. Biol. Med., 2020, 116: 103378. (SCI, Q1, IF=4.589) Y. Yuan, W. Qin, B. Ibragimov, G. Zhang, B. Han, M. Q.-H. Meng, L. Xing, “Densely connected neural network with unbalanced discriminant and category sensitive constraints for polyp recognition,” IEEE Trans. Autom. Sci. Eng., 2020, 17(2): 574–583. (SCI, Q1, IF=5.083) Y. Li, Y. Liu, M. Zhang, G. Zhang, Z. Wang, and J. Luo, “Radiomics with attribute bagging for breast tumor classification using multimodal ultrasound images,” J. Ultras. Med., 2020, 39(2): 361–371. (SCI, Q2, IF=2.153) L. Guo, F. Liu, C. Cai, J. Liu, and G. Zhang*, “3D deep encoder-decoder network for fluorescence molecular tomography,” Opt. Lett., 2019, 44(8): 1892–1895. (SCI, Q1, IF=3.776) J. Liu, J. Cui, F. Liu, Y. Yuan, F. Guo, and G. Zhang*, “Multi-subtype classification model for non-small cell lung cancer based on radiomics: SLS model,” Med. Phys., 2019, 46(7): 3091–3100. (SCI, Q1, IF=4.071) L. Zhang, and G. Zhang*, “Brief review on learning based methods for optical tomography,” J. Innov. Opt. Heal. Sci., 2019, 12(6): 1930011. (SCI, Q3, IF=1.661) S. Jiang, J. Liu, G. Zhang, Y. An, H. Meng, Y. Gao, K. Wang, and J. Tian, “Reconstruction of fluorescence molecular tomography via a fused LASSO method based on group sparsity prior,”IEEE Trans. Biomed. Eng., 2019, 66(5): 1361–1371. (SCI, Q1, IF=4.424) Y. Liu, S. Jiang, J. Liu, Y. An, G. Zhang, Y. Gao, K. Wang, and J. Tian, “Reconstruction method for fluorescence molecular tomography based on L1-norm primal accelerated proximal gradient,” J. Biomed. Opt., 2018, 23(8):085002. (SCI, Q2, IF=2.785) G. Zhang*, S. Tzoumas, K. Cheng, F. Liu, J. Liu, J. Luo, J. Bai, and L. Xing, “Generalized adaptive Gaussian Markov random field for X-ray luminescence computed tomography,” IEEE Trans. Biomed. Eng., 2018, 65(9): 2130–2133. (SCI, Q1, IF=4.424) K. Cheng, M. Sano, C. H. Jenkins, G. Zhang, D. Vernekohl, W. Zhao, C. Wei, Y. Zhang, Z. Zhang, Y. Liu, Z. Cheng, and L. Xing, “Synergistically enhancing the therapeutic effect of radiation therapy with radiation activatable and reactive oxygen species-releasing nanostructures,” ACS Nano, 2018, 12: 4946?4958. (SCI, Q1, IF=14.588) K. Cheng, H. Chen, C. H. Jenkins, G. Zhang, W. Zhao, Z. Zhang, F. Han, J. Fung, M. Yang, Y. Jiang, L. Xing, and Z. Cheng, “Synthesis, characterization, and biomedical applications of a targeted dual-modal near-infrared-II fluorescence and photoacoustic imaging nanoprobe,” ACS Nano, 2017, 11:12276–12291. (SCI, Q1, IF=14.588) G. Zhang*, F. Liu, J. Liu, J. Luo, Y. Xie, J. Bai, and L. Xing, “Cone beam X-ray luminescence computed tomography based on Bayesian method,” IEEE Trans. Med. Imag., 2017, 36(1): 225–235. (SCI, Q1, IF=6.685) G. Zhang, H. Pu, W. He, F. Liu, J. Luo, and J. Bai, “Bayesian framework based direct reconstruction of fluorescence parametric images,” IEEE Trans. Med. Imag., 2015, 34(6): 1378–1391. (SCI, Q1, IF=6.685) G. Zhang, W. He, H. Pu, F. Liu, M. Chen, J. Bai and J. Luo, “Acceleration of dynamic fluorescence molecular tomography with principal component analysis,” Biomed. Opt. Express, 2015, 6(6): 2036–2055. (SCI, Q1, IF=3.921) G. Zhang, H. Pu, W. He, F. Liu, J. Luo, and J. Bai, “Full-direct method for imaging pharmacokinetic parameters in dynamic fluorescence molecular tomography,” Appl. Phys. Lett., 2015, 106(8): 081110. (SCI, Q1, IF=3.597) G. Zhang, F. Liu, H. Pu, W. He, J. Luo, and J. Bai, “A direct method with structural priors for imaging pharmacokinetic parameters in dynamic fluorescence molecular tomography,” IEEE Trans. Biomed. Eng., 2014, 61(3): 986–990. (SCI, Q1, IF=4.424) G. Zhang, F. Liu, B. Zhang, Y. He, J. Luo, and J. Bai, “Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system,” J. Biomed. Opt., 2013, 18(4): 040505. (SCI, Q2, IF=2.785) G. Zhang, X. Cao, B. Zhang, F. Liu, J. Luo, and J. Bai, “MAP estimation with structural priors for fluorescence molecular tomography,” Phys. Med. Biol., 2013, 58(2): 351–372. (SCI, Q2, IF=2.883) W. He#, G. Zhang#, F. Liu, X. Cao, J. Luo, and J. Bai, “Modified forward model for eliminating the time-varying impact in fluorescence molecular tomography,” J. Biomed. Opt., 2014, 19(5): 056012. (SCI, Q2, IF=2.785, co-first author) W. He#, G. Zhang#, F. Liu, X. Cao, J. Luo, and J. Bai, “Projected restarted framework for tomographic reconstruction,” Proc. of SPIE, 2014, 9230: 92300F. (EI, co-first author) Y. An, J. Liu, G. Zhang, S. Jiang, J. Ye, C. Chi, and J. Tian, “Compactly supported radial basis function-based meshless method for photon propagation model of fluorescence molecular tomography,” IEEE Trans. Med. Imag., 2017, 36(2): 366–373. (SCI, Q1, IF=6.685) Y. Liu, J. Liu, Y. An, S. Jiang, J. Ye, Y. Mao, K. He, G. Zhang, C. Chi, J. Tian, “Novel trace norm regularization method for fluorescence molecular tomography reconstruction,” Proc. of SPIE, 2017, 10047: 100470U. (EI) S. Jiang, J. Liu, Y. An, G. Zhang, J. Ye, Y. Mao, K. He, C. Chi, and J. Tian, “Novel L2,1-norm optimization method for fluorescence molecular tomography reconstruction,” Biomed. Opt. Express, 2016, 7(6):2342–2359. (SCI, Q1, IF=3.921) Y. An, J. Liu, G. Zhang, J. Ye, Y. Mao, S. Jiang, W. Shang, Y. Du, C. Chi, and J. Tian, “Meshless reconstruction method for fluorescence molecular tomography based on compactly supported radial basis function,” J. Biomed. Opt., 2015, 20(10):105003. (SCI, Q2, IF=2.785) Y. An, J. Liu, G. Zhang, J. Ye, Y. Du, Y. Mao, C. Chi, and J. Tian, “A novel region reconstruction method for fluorescence molecular tomography,” IEEE Trans. Biomed. Eng., 2015, 62(7): 1818–1826. (SCI, Q1, IF=4.424) X. Zhang, F. Liu, S. Zuo, J. Shi, G. Zhang, J. Bai, and J. Luo, “Reconstruction of fluorophore concentration variation in dynamic fluorescence molecular tomography,” IEEE Trans. Biomed. Eng., 2015, 62(1): 138–144. (SCI, Q1, IF=4.424) H. Pu, G. Zhang, W. He, F. Liu, H. Guang, Y. Zhang, J. Bai, and J. Luo, “Resolving fluorophores by unmixing multispectral fluorescence tomography with independent component analysis,” Phys. Med. Biol., 2014, 59(17): 5025–5042. (SCI, Q2, IF=2.883) W. He, H. Pu, G. Zhang, X. Cao, B. Zhang, F. Liu, J. Luo, and J. Bai, “Subsurface fluorescence molecular tomography with prior information,” Appl. Opt., 2014, 53(3): 402–409. (SCI, Q3, IF=1.961) J. Shi, F. Liu, G. Zhang, B. Zhang, J. Luo, and J. Bai, “Enhanced spatial resolution in fluorescence molecular tomography using restarted L1-regularized nonlinear conjugate gradient algorithm,” J. Biomed. Opt., 2014, 19(4): 046018. (SCI, Q2, IF=2.785) H. Pu, W. He, G. Zhang, B. Zhang, F. Liu, Y. Zhang, J. Luo, and J. Bai, “Separating structures of different fluorophore concentrations by principal component analysis on multispectral excitation-resolved fluorescence tomography images,” Biomed. Opt. Express, 2013, 4(10): 1829–1845. (SCI, Q1, IF=3.921)

推荐链接
down
wechat
bug