个人简介
周炳,博士生导师。2005进入上海交大医学院医学院,2009年博士毕业后于美国国立健康研究院(NIH)下属的神经疾病与脑卒中研究所(NINDS)从事科学研究工作,主要集中于研究神经元线粒体和内体/溶酶体等细胞器的轴浆转运。过去的研究揭示和阐明了几个领域内的重要问题,包括:(1)发现了成年神经元再生能力低下的内在机制,提出调节线粒体能量代谢是促进神经再生的理想治疗靶点。 (2)揭示了ALS疾病的重要病理机制,证明溶酶体异常导致受损线粒体无法通过Mitophagy途径进行降解,是神经元出现病理改变和导致症状发生的重要因素。主要学术成果发表在Neuron、Journal of Cell Biology、Cell Reports、Autophagy等,其学术成果受到包括新英格兰医学杂志在内的广泛关注。
17年回国后,课题组聚焦靶向线粒体和溶酶体功能的神经保护策略和机制研究。围绕神经损伤再生、神经退行性疾病、脑卒中等神经系统疾病的科学问题,立足于学科交叉,以结合转基因动物模型,灵长类动物模型、工程微流控系统、以及基于macro指令的高通量显微自动成像与图像分析、和前沿的细胞和分子生物学手段来探索这些疾病的发生机制。开发保护神经元的临床前溶酶体医药(Lysosomal Medicine)和线粒体医药(Mitochondrial Medicine)。后续转化研究与首都医科大学宣武医院,北京市脑血管重大疾病研究院合作进行。课题受北京市自然科学基金,国家面上项目,科技部项目,北航青年拔尖人才杰青类等支持。
教育背景
2005- 2008 博士 上海交通大学医学院
2001- 2004 硕士 兰州大学
1997- 2001 学士 兰州大学
工作经历
2017 - 2021 北京航空航天大学 医工交叉创新研究院
2014 - 2017 Research Fellow Synaptic Function Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, USA
2009 - 2014 Visiting Fellow Synaptic Function Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, USA
学术任职及奖励
中国生物物理学会膜生物学会委员(2018.01-)
美国国立卫生研究院FARE学会委员(2012.03-2016.05)
美国神经科学学会会员(Society for Neuroscience, 2009.11-)
美国细胞生物学学会会员(The American Society for Cell Biology,2011.06-)
美国心脏与卒中协会会员(AHA/ASA, 2018.01-)
美国国立卫生研究院访问学者奖(2009.04-2014.04)
美国国立卫生研究院访问研究员奖(2014.04-2017.07)
代表性科研项目
国家自然科学基金面上项目,项目编号:81971198,项目名称:靶向溶酶体功能和轴浆线粒体动态平衡对ALS运动神经元能量代谢瀑布反应的调控研究,2020.01-2023.12 ,55万(项目负责人)
北京市自然科学基金面上项目,项目编号:7192103,项目名称:神经元线粒体应激对急性高原病相关脑水肿的影响及其作用机制研究,2019.01-2021.12 ,20 万(项目负责人)
科技部蛋白质机器与生命过程调控重点专项,项目编号:SQ2019YFA -050034,项目名称:线粒体和溶酶体稳态维持的蛋白质机器及其在神经退行性疾病中的作用,2019.07-2024.06 ,2400万(骨干主持,216万)
北京航空航天大学青年拔尖人才杰青类,项目编号:011000/KG12067601,项目名称:线粒体医学与神经疾病康复,2018.09-2022.12 ,50 万(项目负责人)
北京航空航天大学医工交叉创新研究院青年拔尖人才杰青类,项目编号:013800/ZG226S187A,项目名称:神经系统的时空代谢可塑性与疾病,2018.06-2022.12 ,50 万(项目负责人)
北京航空航天大学大数据与精准医疗中心,医工百人基金,项目编号:013800/ZF138G1807,项目名称:线粒体医学,2018.06-2020.12 ,20万(项目负责人)
北京航空航天大学大数据与精准医疗中心,项目编号011700/ZF226G1703,项目名称:神经疾病与精准医学,2017.06-2019.12 ,600万(骨干主持,70万)
研究领域
课题组聚焦靶向线粒体和溶酶体功能的神经保护策略和机制研究。围绕神经损伤再生、神经退行性疾病、脑卒中等重要问题,立足学科交叉,以结合转基因动物模型、工程微流控系统、高通量显微自动成像与图像分析、及前沿的细胞和分子生物学手段来探索疾病的发生机制,以进行神经保护的临床前药物靶点发现与开发。
实验室研究方向包括:
1)神经退行性病变和再生过程中的代谢可塑性调控机制
2)低温低氧医学在神经系统疾病与脑保护中的研究
3)神经元细胞器互作网络研究和药物靶点发现与转化
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Hong An (#),Bing Zhou*,xunmin ji* (2021) Mitochondrial quality control in acute ischemic stroke JCBFM. 22(11),5887 https://doi.org/ 10.1177/0271678X211046992
Rongrong Han (#),Jing Liang , Bing Zhou* (2021) Glucose Metabolic Dysfunction in Neurodegenerative Diseases—New Mechanistic Insights and the Potential of Hypoxia as a Prospective Therapy Targeting Metabolic Reprogramming. Int.J.Mol.Sci. 22(11),5887 https://doi.org/10. 3390 /ijms22115887
Jiamin Wu, Zhi Lu, Dong Jiang, Yuduo Guo, Hui Qiao, Yi Zhang, Tianyi Zhu, Yeyi Cai, Xu Zhang, Karl Zhanghao, Hao Xie, Tao Yan, Guoxun Zhang, Xiaoxu Li, Zheng Jiang, Xing Lin, Lu Fang, Bing Zhou, Peng Xi, Jingtao Fan, Li Yu, Qionghai Dai (2021) Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale. Cell https://doi.org/10.1016/j.cell. 2021. 04.029
Jing Liang (#),Rongrong Han, Bing Zhou* (2021) Metabolic Reprogramming: Strategy for Ischemic Stroke Treatment by Ischemic Preconditioning. Biology 10(5),424; doi.org/10.3390/biology10050424
Xiaoyan Yang(#); Ruixuan Liu; Ying Xu; Ying Xu; Bing Zhou* (2021) The Mechanisms of Peripheral Nerve Preconditioning Injury on Promoting Axonal Regeneration. Neural Plasticity, doi.org/10.1155/2021/6648004
Huang, Z.H(#)., Feng, A.Y., Liu, J., Zhou, L., Zhou, B*., and Yu, P. (2021). Inhibitor of DNA binding 2 accelerates nerve regeneration after sciatic nerve injury in mice. Neural Regen Res 16, 2542-2548.
Z. Huang(#), J. Liu, J. Jin, Q. Chen, L. B. E. Shields, Zhang Y.Zhou L, Zhou B*, Yu P* (2019) Inhibitor of DNA binding 2 promotes axonal growth through upregulation of Neurogenin2. Exp Neurol. 2019;320:112966.
Cheng XT(#), Xie Y, Zhou B, Huang N, Tamar Farfel-Becker, Sheng ZH*(2018) Revisiting LAMP1 as a marker for degradative autophagy-lysosomal organelles in the nervous system. Autophagy, 14(8):1472-1474.
Cheng XT(#), Xie Y, Zhou B, Huang N, Tamar Farfel-Becker, Sheng ZH* (2018). Characterization of LAMP1-labeled nondegradative lysosomal and endocytic compartments in neurons. The Journal of Cell Biology DOI: 10.1083/jcb.201711083.
Lin MY(#), Cheng XT, Tammineni, Xie Y, Zhou B, Cai Q, Sheng ZH* (2017) Releasing syntaphilin removes stressed mitochondria from axons independent of mitophagy under pathophysiological conditions. Neuron, 94, 595-610.
Zhou B(#), Yu P, Lin MY, Sun T, Chen YM, Sheng ZH* (2016). Facilitation of axon regeneration by enhancing mitochondria transport and rescuing energy deficits. The Journal of Cell Biology, 214(1):103-119 (封面文章, Nature杂志Research Highlights,New England Journal of Medicine发表题为“Mitochondrial Mobility and Neuronal Recovery”的文章对该研究进行专题介绍和评论,AAAS新闻平台、NIH官方网站等多家媒体新闻报道) (5yr IF=9.88) News Release: Mobilizing mitochondria may be key to regenerating damaged neurons . http://www.eurekalert.org/pub_releases/ 2016 -06/rup-mmm060716.php.
Xie Y(#), Zhou B(#), Lin MY, Wang S, Foust KD, and Sheng ZH* (2015). Endolysosomal Deficits Augment Mitochondria Pathology in Spinal Motor Neurons of Asymptomatic fALS Mice. Neuron, 87(2): 355-370.(#Co-first author). NIH Government News Releases: Neurons’ broken machinery piles up in ALS.https://www.nih.gov/news-events/news-releases/neurons-broken-machinery-piles-als
Xie Y(#), Zhou B, Lin MY, and Sheng ZH*(2015). Progressive endolysosomal deficits impair autophagic clearance beginning at early asymptomatic stages in fALS mice. Autophagy, 11(10): 1934-1936.
Cheng XT(#), Zhou B, Lin MY, Cai Q, and Sheng ZH* (2015). Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes. The Journal of Cell Biology, 209(3): 377-386.
Cheng XT(#), Zhou B, Lin MY, Cai Q, and Sheng ZH* (2015), Axonal autophagosomes use the ride-on service for retrograde transport toward the soma. Autophagy, 11(8): 1434-1436.
Wen J(#), Yang HB, Zhou B, Lou HF, and Duan S*. (2013). β-Catenin is critical for cerebellar foliation and lamination. PloS One, 8(5): e64451.
Zhou B(#), Cai Q, Xie Y, and Sheng ZH*. (2012). Snapin recruits dynein to BDNF-TrkB signaling endosomes for retrograde axonal transport and is essential for dendrite growth of cortical neurons. Cell Reports, 2(1): 42-51.
Zhou B(#), Zhu YB(#), Lin L(#), Cai Q, and Sheng ZH*. (2011). Snapin deficiency is associated with developmental defects of the central nervous system. Bioscience Reports, 31(2): 151-158.
Tong XP(#), Li XY, Zhou B, Shen W, Zhang ZJ, Xu TL, and Duan S*. (2009). Ca(2+) signaling evoked by activation of Na(+) channels and Na(+)/Ca(2+) exchangers is required for GABA-induced NG2 cell migration. The Journal of Cell Biology, 186(1): 113-128.
Li H(#), Chen G, Zhou B, and Duan S*. (2008). Actin filament assembly by myristoylated alanine-rich C kinase substrate-phosphatidylinositol-4,5 -diphosphate signalling is critical for dendrite branching. Molecular Biology of the Cell, 19(11): 4804-4813.