当前位置: X-MOL首页全球导师 国内导师 › 邢炜

个人简介

邢炜博士2016年毕业于英国华威大学工程学院,随后加入美国犹他大学科学计算与图像处理研究中心(SCI),从事不确定性量化分析,代理模型和机器学习在解偏微分方程的应用等研究。他于2020年9月加入北京航空航天大学,在集成电路学院任职助理教授,从事集成电路自动化设计工具开发,机器学习,统计学系等研究工作。 主要研究方向为代理模型,时空场模拟仿真,机器学习,贝叶斯优化。有大量参与国外工程优化项目(美国国防高级研究计划局DARPA、英国工程和自然科学研究委员会EPSRC、英国能源与气候变化部DECC)的经验,在数学/工程顶级期刊Journal of computational physics, Journal of power sources,人工智能顶级会议AAAI,NeurIPS,IJCAI等发表论文共23篇。代理模型工作获得医疗图像顶会IPMI2019 best poster,带领学生夺得2020年南京EDA 精英杯一等奖和二等奖。 邢炜博士的专业特长在于人工智能算法与工程设计、不确定性分析和大规模传感器网络的交叉性等领域,在这方面的算法和建模都被成功地应用各类项目之中。针对大规模时空物理场(如电磁场,温度场)的工程优化问题,开发了多种人工智能算法,成功应用于英国能源和气候基金(DECC)“可溶铅氧化还原液流电池组件的改进”和欧盟科学基金(EU)“基于先进纳米材料的新概念金属空气电池”等项目上,使其工程优化的效率提高了10倍到1000不等;首次提出的含狄利克雷过程的联合统计模型,被美国DARPA“新一代工业设计智能套件”项目所采用,解决了计算机辅助设计(CAD)中的多优化目标问题,其成果发表于工程设计著名期刊: Journal of mechanical design和机器学习国际顶级会议AAAI(中国计算机 学会(CCF )A类会议)上;使用非参数化机器学习模型对大型传感器网络的时空状态进行了建模、提升了预测精度和传感器网络优化部署,该方案被犹他大学Air Quality and Utah项目组采用,应用到美国盐湖城市(人口242万,面积286平方公里)的项目上,为公众提供实时的pm2.5报告和预警;提出了基于模型降阶图像配准算法,解决了医疗磁共振成像图配准慢的问题,极大(100倍)地提升了当前算法的基准计算效率,为下一代医疗磁 共振成像图配准的开发提供了优秀的解决方案。该成果获得2019年国际医疗图像处理权威会议IPMI的最佳学术海报奖。 教育经历 2008.9 -- 2012.7 深圳大学 机械制造及其自动化 大学本科毕业 工学学士学位 2012.9 -- 2016.9 华威大学 计算数学 博士研究生毕业 哲学博士学位 工作经历 2016.9 -- 2017.9 华威大学 工程学院 博士后 2017.9 -- 2019.12 犹他大学 科学计算与图像研究中心 博士后

研究领域

代理模型,时空场模拟仿真,机器学习,贝叶斯优化

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Journal Paper Y. Gu, C. Han, Y. Chen, and W. W. Xing, “Mission Replanning for Multiple Agile Earth Observation Satellites Based on Cloud Coverage Forecasting,” IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing, vol. 15, pp. 594–608, 2022, [Link] W. W. Xing, M. Cheng, K. Cheng, W. Zhang, and P. Wang, “InfPolyn, a Nonparametric Bayesian Characterization for Composition-Dependent Interdiffusion Coefficients,” Materials, vol. 14, no. 13, p. 3635, Jun. 2021 [Link] H. Wang, C. Li, W. Xing, Y. Ye, and P. Wang, “A machine learning approach to quantify dissolution kinetics of porous media,” Journal of Machine Learning for Modeling and Computing, 2.2, 2021 [Link] W. I. Ibrahim, M. R. Mohamed, R. M. T. R. Ismail, P. K. Leung, W. W. Xing, and A. A. Shah, “Hydrokinetic energy harnessing technologies: A review,” Energy Reports, vol. 7, pp. 2021–2042, Nov. 2021 [Link] W. W. Xing, A. A. Shah, P. Wang, S. Zhe, Q. Fu, and R. M. Kirby, “Residual Gaussian process: A tractable nonparametric Bayesian emulator for multi-fidelity simulations,” Applied Mathematical Modelling, vol. 97, pp. 36–56, Sep. 2021 W. W. Xing, R. M. Kirby, and S. Zhe, “Deep coregionalization for the emulation of simulation-based spatial-temporal fields,” Journal of Computational Physics, vol. 428, p. 109984, Mar. 2021 Kerry E. Kelly#, Wei W. Xing#, Tofigh Sayahi, Logan Mitchell, Tom Becnel, Pierre-Emmanuel Gaillardon, Miriah Meyer, and Ross T. Whitaker., “Community-Based Measurements Reveal Unseen Differences during Air Pollution Episodes,” Environmental Science & Technology, vol. 55, no. 1, pp. 120–128, Jan. 2021 W. W. Xing, F. Yu, P. K. Leung, X. Li, P. Wang, and A. A. Shah, “A new multi-task learning framework for fuel cell model outputs in high-dimensional spaces,” Journal of Power Sources, vol. 482, p. 228930, Jan. 2021 W. Xing, S. Y. Elhabian, V. Keshavarzzadeh, and R. M. Kirby, “Shared-Gaussian Process: Learning Interpretable Shared Hidden Structure Across Data Spaces for Design Space Analysis and Exploration,” Journal of Mechanical Design, vol. 142, no. 8, Aug. 2020 W. Xing, M. Razi, R. M. Kirby, K. Sun, and A. A. Shah, “Greedy nonlinear autoregression for multifidelity computer models at different scales,” Energy and AI, vol. 1, p. 100012, Aug. 2020 C. Mullen, T. Collins, W. Xing, R. Whitaker, T. Sayahi, T. Becnel, P. Goffin, P. Gaillardon, M. Meyer, K. Kelly, “Patterns of distributive environmental inequity under different PM2.5 air pollution scenarios for Salt Lake County public schools,” Environmental Research, vol. 186, p. 109543, Jul. 2020 D.V. Mallia, A.K. Kochanski, K.E. Kelly, R. Whitaker, W. Xing, L.E. Mitchell, A. Jacques, A. Farguell, J. Mandel, P.E. Gaillardon, and , T. Becnel. “Evaluating Wildfire Smoke Transport Within a Coupled Fire-Atmosphere Model Using a High-Density Observation Network for an Episodic Smoke Event Along Utah’s Wasatch Front,” Journal of Geophysical Research: Atmospheres, vol. 125, no. 20, p. e2020JD032712, 2020 C. Gadd, W. Xing, M. M. Nezhad, and A. A. Shah, “A Surrogate Modelling Approach Based on Nonlinear Dimension Reduction for Uncertainty Quantification in Groundwater Flow Models,” Transport in Porous Media, vol. 126, no. 1, pp. 39–77, Jan. 2019 V. Triantafyllidiis, W. W. Xing, P. K. Leung, A. Rodchanarowan, and A. A. Shah, “Probabilistic sensitivity analysis for multivariate model outputs with applications to Li-ion batteries,” Journal of Physics: Conference Series, vol. 1039, p. 012020, Jun. 2018 A. A. Shah, W. W. Xing, and V. Triantafyllidis, “Reduced-order modelling of parameter-dependent, linear and nonlinear dynamic partial differential equation models,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 473, no. 2200, p. 20160809, Apr. 2017 W. W. Xing, V. Triantafyllidis, A. A. Shah, P. B. Nair, and N. Zabaras, “Manifold learning for the emulation of spatial fields from computational models,” Journal of Computational Physics, vol. 326, pp. 666–690, Dec. 2016 W. Xing, A. A. Shah, and P. B. Nair, “Reduced dimensional Gaussian process emulators of parametrized partial differential equations based on Isomap,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 471, no. 2174, p. 20140697, Feb. 2015 Conference Paper Zheng Wang, Wei Xing, Robert M. Kirby, and Shandian Zhe, “Physics Informed Deep Kernel Learning”, The 25th International Conference on Artificial Intelligence and Statistics (AISTATS), 2022 (to appear) Shihong Wang, Xueyin Zhang, and Wei W. Xing*, “E-LMC: Extended Linear Model of Coregionalization for Predictions of Spatial Fields”, The 2022 International Joint Conference on Neural Networks (IJCNN) 2022 (to appear) Shuo Yin, Xiang Jin, Linxu Shi, Kang Wang and Wei W. Xing*, “Efficient Bayesian Yield Analysis and Optimization with Active Learning”, The 59th Design Automation Conference (DAC), 2022 (to appear) Zhou Jin, Haojie Pei, Yichao Dong, Xiang Jin, Xiao Wu, Wei W. Xing* and Dan Niu*, “Accelerating DC Circuit Simulation with Reinforcement Learning”, The 59th Design Automation Conference (DAC), 2022 (to appear) Z. Wang, W. Xing, R. Kirby, and S. Zhe, “Multi-Fidelity High-Order Gaussian Processes for Physical Simulation,” in International Conference on Artificial Intelligence and Statistics (AISTAT), Mar. 2021, pp. 847–855 [PDF] S. Li, W. Xing, R. M. Kirby, and S. Zhe, “Scalable Gaussian Process Regression Networks,” International Joint Conference on Artificial Intelligence (IJCAI), Jul. 2020, vol. 3, pp. 2456–2462 [PDF] W. Xing, S. Elhabian, R. Kirby, R. T. Whitaker, and S. Zhe, “Infinite ShapeOdds: Nonparametric Bayesian Models for Shape Representations,” Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), vol. 34, no. 04, pp. 6462–6469, Apr. 2020 [PDF] S. Li, W. Xing, R. Kirby, and S. Zhe, “Multi-Fidelity Bayesian Optimization via Deep Neural Networks,” Advances in Neural Information Processing Systems (NeurIPS), vol. 33, pp. 8521–8531, 2020 [PDF] S. Zhe, W. Xing, and R. M. Kirby, “Scalable High-Order Gaussian Process Regression,” in The 22nd International Conference on Artificial Intelligence and Statistics (AISTAT), Apr. 2019, pp. 2611–2620 [PDF] J. Wang#, W. Xing#, R. M. Kirby, and M. Zhang, “Data-Driven Model Order Reduction for Diffeomorphic Image Registration,” in Information Processing in Medical Imaging (IPMI), vol. 11492 [PDF] W. Xing, A. A. Shah, B. Urasinska-Wojcik, and J. W. Gardner, “Prediction of impurities in hydrogen fuel supplies using a thermally-modulated CMOS gas sensor: Experiments and modelling,” in 2017 IEEE SENSORS, Glasgow, Oct. 2017, pp. 1–3, [Link] Moore J., Xing W., Wiese J., Dailey M. Becnel T., Goffin P., J., Gaillardon, Kelly K, Butterfield T., Engaging Pre-College Students in Hypothesis Generation using a Citizen Scientist Network of Air Quality Sensors. ASEE Annual Conference and exposition K. Kelly, W. Xing, P. Goffin, T. Sayahi, T. Becnel, P-E. Gaillardon, A.E. Butterfield, M. Meyer, R. Whitaker, Understanding how pollution episodes affect community-level air quality with a distributed sensor network, AIChE Annual Meeting, Orlando, FL, November 10-15, 2019. J. Moore, W. Xing, M. Dailey, K. Le, T. Becnel, P. Goffin, M. Meyer, P-E Gaillardon, R.Whitaker, J. Wiese, A.E. Butterfield, K.E. Kelly, Engaging middle and high school students in hypothesis generation using a citizen-scientist network of air quality sensors, AIChE Annual Meeting, Orlando, FL, November 10-15, 2019. T. Sayahi, P.-E. Gaillardon, R. Whitaker, M. Meyer, T. Butterfield, P. Goffin, T. Becnel, A. Biglari, D. Kaufman, T. Sayahi, W. Xing, K. Kelly, Platform: Long-term evaluation of the plantower PMS sensor. 10th International Aerosol Conference, September 2nd-7th, St. Louis, Mo, 2018. K.E. Kelly, P.-E. Gaillardon, R. Whitaker, M. Meyer, T. Butterfield, P. Goffin, T. Becnel, A. Biglari, D. Kaufman, T. Sayahi, W. Xing, Poster: A layered framework for integrating low-cost sensor data and for engaging citizens to understand PM2.5 exposure. 10th International Aerosol Conference, September 2nd-7th, St. Louis, Mo, 2018. Triantafyllidis, V., Xing, W., Shah, A. A., & Nair, P. B. (2016). Neural network emulation of spatio-temporal data using linear and nonlinear dimensionality reduction. In Advanced Computer and Communication Engineering Technology (pp. 1015-1029). Springer, Cham.

推荐链接
down
wechat
bug