研究领域
Antibiotics have made a massive contribution to human health by reducing the mortality and economic costs associated with bacterial disease. Unfortunately, antibiotic resistance in pathogenic bacteria threatens to undermine the clinical utility of antibiotics and we are currently faced with ominous possibility of a post-antibiotic era. Research in the MacLean lab is focused on understanding the fundamental evolutionary processes that drive the spread and maintenance of resistance, primarily using controlled in vitro experimental evolution in the opportunistic pathogenic bacterium Pseudomonas aeruginosa.
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
San Millan, J.A Escudero*, D.Gifford*, D. Mazel and R.C MacLean. Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria. Nature Ecology and Evolution (2016) DOI:10.1038/s41559-016-0010
M.Toll-Riera, A. San Millan, A. Wagner and R. C MacLean. The genomic basis of evolutionary innovation in Pseudomonas aeruginosa. PLOS Genetics (2016) doi:10.1371/journal.pgen.1006005 [Link]
A. San Millan, M. Toll-Riera, Q. Qi and R.C. MacLean. Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa. Nature Communications (2015) 6, doi:10.1038/ncomms7845 [Link]
Q, Qi, G. Preston and R.C. MacLean. Linking system-wide impacts of RNA polymerase mutations to the fitness cost of rifampicin resistance in Pseudomonas aeruginosa. mBio (2014) 5, doi: 10.1128/mBio.01562-14 [Link]
A. San Millan*, R.Peña-Miller*, M. Toll-Riera, Z.Halbert, A.McLean, B.Cooper and R.C MacLean. Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids. Nature Communications (2014) 5, doi:10.1038/ncomms6208. [Link]