当前位置: X-MOL首页全球导师 国内导师 › 王啸

个人简介

副教授,博士生导师,国家优青基金获得者,鹏城实验室兼聘助理研究员。研究方向为图神经网络、数据挖掘与机器学习。成果多次被写入业界图学习标准库PyG和DGL等。出版教材一部,专著三部,著作章节一章。担任WWW/AAAI/IJCAI的高级程序委员会委员。获得教育部自然科学一等奖,中国电子学会科技进步一等奖,吴文俊人工智能优秀青年奖,ACM 中国新星提名奖,连续两年入选斯坦福大学发布的全球Top 2%顶尖科学家榜单及AMiner评选的AI2000最具影响力学者Honorable mention。北京智源研究院青源会会员,CCF高级会员,CCFAI专委会执行委员。 主持多项国家自然科学基金和CCF-腾讯犀牛鸟科研基金。 图神经网络、图数据挖掘、机器学习及应用。共发表论文80余篇,成果受到图灵奖得主等国内外同行的广泛关注和正面评价。谷歌学术总引用5500余次,其中CCF A类论文40余篇,ESI高被引论文2篇,3篇论文单篇引用超过700次,6篇入选国外第三方网站PaperDigest评选的最有影响力论文榜单,1篇提名CCF A类会议WWW 2021最佳论文, 1篇获得CCF B类会议ICDM 2021最佳学生论文亚军,1篇获得2022世界人工智能大会青年优秀论文提名奖。参与开发业内首个异质图表示学习工具包OpenHINE以及异质图神经网络工具包OpenHGNN。相关成果应用在银行、电力、淘宝、天猫等实际业务中,取得显著经济效益和社会效益。 Honors Awarded 2022 The world artificial intelligence conference youth outstanding paper nomination award 2022 AI 2000 Most Influential Scholar Honorable Mention in AAAI/IJCAI 2021 ACM China Rising Star Award Nomination (3 nominees in China) 2021 ICDM 2021 Best Student Paper Runner-up 2021 WWW 2021 Best Paper Awards Nomination

研究领域

图神经网络、图数据挖掘、机器学习及应用

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Shaohua Fan, Shuyang Zhang, Xiao Wang, Chuan Shi. Directed acyclic graph structure learning from dynamic graphs. AAAI 2023. (CCF-A) Yanbei Liu, Lianxi Fan, Xiao Wang, Zhitao Xiao, Shuai Ma, Yanwei Pang, Jerry Chun-Wei Lin. HGBER: Heterogeneous Graph Neural Network with Bidirectional Encoding Representation. IEEE TNNLS. Deyu Bo, Binbin Hu, Xiao Wang, Zhiqiang Zhang, Chuan Shi, Jun Zhou. Regularizing graph neural networks via consistency-diversity graph augmentations. AAAI 2022. (CCF-A) Mengmei Zhang, Xiao Wang, Meiqi Zhu, Chuan Shi, Zhiqiang Zhang, Jun Zhou. Robust heterogeneous graph neural networks against adversarial attacks. AAAI 2022. (CCF-A) Nian Liu, Xiao Wang, Lingfei Wu, Yu Chen, Xiaojie Guo, Chuan Shi. Compact Graph Structure Learning via Mutual Information Compression. WWW 2022. (CCF-A) Hongrui Liu, Binbin Hu, Xiao Wang, Chuan Shi, Zhiqiang Zhang, Jun Zhou. Confidence May Cheat: Self-Training on Graph Neural Networks under Distribution Shift. WWW 2022. (CCF-A) Yugang Ji, Guanyi Chu, Xiao Wang, Chuan Shi, Jianan Zhao. Prohibited Item Detection via Risk Graph Structure Learning. WWW 2022. (CCF-A) Yiding Zhang, Chaozhuo Li, Xing Xie, Xiao Wang, Chuan Shi, Yuming Liu, Hao Sun, Liangjie Zhang, Weiwei Deng, Qi Zhang. Geometric disentangled collaborative filtering. SIGIR 2022. (CCF-A) Tianyu Zhao, Cheng Yang, Yibo Li, Quan Gan, Zhenyi Wang, Fengqi Liang, Huan Zhao, Yingxia Shao, Xiao Wang, Chuan Shi. Space4HGNN: A novel, modularized and reproducible platform to evaluate heterogeneous graph neural network. SIGIR 2022. (CCF-A) Shuyun Gu, Xiao Wang, Chuan Shi, Ding Xiao. Self-supervised graph neural networks for multi-behavior recommendation. IJCAI 2022. (CCF-A) Hui Han, Tianyu Zhao, Cheng Yang, Hongyi Zhang, Yaoqi Liu, Xiao Wang, Chuan Shi. OpenHGNN: An open-source toolkit for heterogeneous graph neural networks. CIKM 2022. Nian Liu, Xiao Wang*, Deyu Bo, Chuan Shi, Jian Pei. Revisiting graph contrastive learning from the perspective of graph spectrum. NeurIPS 2022. (CCF-A) Shaohua Fan, Xiao Wang, Yanhu Mo, Chuan Shi, Jian Tang. Debiasing graph neural networks via learning disentangled causal substructure. NeurIPS 2022. (CCF-A) Ruijia Wang, Xiao Wang*, Chuan Shi, Le Song. Uncovering the structural fairness in graph contrastive learning. NeurIPS 2022. (CCF-A) Shaohua Fan, Xiao Wang, Chuan Shi, Kun Kuang, Nian Liu, Bai Wang. Debiased graph neural networks with agnostic label selection bias. IEEE TNNLS. Shaohua Fan, Xiao Wang, Chuan Shi, Peng Cui, Bai Wang. Generalizing graph neural networks on out-of-distribution graphs. arXiv:2111.10657(opens new window) Zhizhi Yu, Di Jin, Ziyang Liu, Dongxiao He, Xiao Wang, Hanghang Tong, Jiawei Han. Embedding text-rich graph neural networks with sequence and topical semantic structures. KAIS. Jianan Zhao, Xiao Wang*, Chuan Shi, Binbin Hu, Guojie Song, Yanfang Ye. Heterogeneous graph structure learning for graph neural networks. AAAI 2021. (CCF-A) Deyu Bo, Xiao Wang, Chuan Shi, Huawei Shen. Beyond Low-frequency Information in Graph Convolutional Networks. AAAI 2021. (CCF-A) Houye Ji, Junxiong Zhu, Xiao Wang,Chuan Shi, Bai Wang, Xiaoye Tan, Yanghua Li, Shaojian He. Who You Would Like to Share With? A Study of Share Recommendation in Social E-commerce. AAAI 2021. (CCF-A) Yiding Zhang, Xiao Wang, Chuan Shi, Nian Liu, Guojie Song. Lorentzian Graph Convolutional Neural Networks. WWW 2021. (CCF-A) Meiqi Zhu, Xiao Wang*, Chuan Shi, Houye Ji, Peng Cui. Interpreting and Unifying Graph Neural Networks with An Optimization Framework. WWW 2021. (CCF-A) Best Paper Awards Nomination! Most influential papers in WWW 2020 (TOP 15) by PaperDigest Ruijia Wang, Shuai Mou, Xiao Wang*, Wanpeng Xiao, Qi Ju, Chuan Shi, Xing Xie. Graph Structure Estimation Neural Networks. WWW 2021. (CCF-A) Houye Ji, Junxiong Zhu, Chuan Shi, Xiao Wang, Bai Wang, Chaoyu Zhang, Zixuan Zhu, Feng Zhang, Yanghua Li. Large-scale Comb-K Recommendation. WWW 2021. (CCF-A) Hong Huang, Ruize Shi, Wei Zhou, Xiao Wang*, Hai Jin, Xiaoming Fu. Temporal heterogeneous information network embedding. IJCAI 2021. (CCF-A) Guanyi Chu, Xiao Wang, Chuan Shi, Xunqiang Jiang. CuCo: graph representation with curriculum contrastive learning. IJCAI 2021. (CCF-A) Xiao Wang, Nian Liu, Hui Han, Chuan Shi. Self-supervised Heterogeneous Graph Neural Network with Co-contrastive Learning. KDD 2021. (CCF-A) Yugang Ji, Chuan Shi, Xiao Wang. Prohibited Item Detection on Heterogeneous Risk Graphs. CIKM 2021. Zhizhi Yu, Di Jin, Ziyang Liu, Dongxiao He, Xiao Wang*, Hanghang Tong, Jiawei Han. AS-GCN: Adaptive semantic architecture of graph convolutional networks for text-rich networks. ICDM 2021. Best Student Paper Runner Up! Xiao Wang, Hongrui Liu, Chuan Shi, Cheng Yang. Be confident! Towards trustworthy graph neural networks via confidence calibration. NeurIPS 2021. (CCF-A) Di Jin, Zhizhi Yu, Cuiying Huo, Rui Wang, Xiao Wang*, Dongxiao He, Jiawei Han. Universal graph convolutional networks. NeurIPS 2021. (CCF-A) Houye Ji, Xiao Wang, Chuan Shi, Bai Wang, Philip S. Yu. Heterogeneous graph propagation network. IEEE TKDE. (CCF-A) 石川,王睿嘉,王啸*. 异质信息网络分析与应用综述. 软件学报. Yiding Zhang, Xiao Wang, Chuan Shi, Xunqiang Jiang, Yanfang Ye. Hyperbolic graph attention network. IEEE TBD. Yiding Zhang, Xiao Wang, Nian Liu, Chuan Shi. Embedding heterogeneous information network in hyperbolic spaces. ACM TKDD. Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, Philip S. Yu. A Survey on Heterogeneous Graph Embedding: Methods, Techniques, Applications and Sources. IEEE TBD. Ruijia Wang, Chuan Shi, Tianyu Zhao, Xiao Wang, Yanfang Ye. Heterogeneous information network embedding with adversarial disentangler. IEEE TKDE. (CCF-A) Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, Jian Pei. AM-GCN: Adaptive Multi-channel Graph Convolutional Networks. KDD 2020. (CCF-A) Most influential papers in KDD 2020 (TOP 15) by PaperDigest Xiao Wang, Ruijia Wang, Chuan Shi, Guojie Song, Qingyong Li. Multi-component graph convolutional collaborative filtering. AAAI 2020. (CCF-A) Yanbei Liu, Xiao Wang*, Shu Wu, Zhitao Xiao. Independence promoted graph disentangled networks. AAAI 2020. (CCF-A) Xiao Wang, Shaohua Fan, Kuang Kun, Chuan Shi, Jiawei Liu, Bai Wang. Decorrelated clustering with data selection bias. IJCAI 2020. (CCF-A) Jianan Zhao, Xiao Wang*, Chuan Shi, Zekuan Liu, Yanfang Ye. Network Schema Preserving Heterogeneous Information Network Embedding. IJCAI 2020. (CCF-A) Hong Huang, Zixuan Fang, Xiao Wang*, Youshan Miao, Hai Jin. Motif-preserving temporal network embedding. IJCAI 2020. (CCF-A) Deyu Bo, Xiao Wang*, Chuan Shi, Meiqi Zhu, Emiao Lu, Peng Cui. Structural Deep Clustering Network. WWW 2020. (CCF-A) Most influential papers in WWW 2020 (TOP 15) by PaperDigest Shaohua Fan, Xiao Wang, Chuan Shi, Emiao Lu, Ken Lin, Bai Wang. One2Multi Graph Autoencoder for Multi-view Graph Clustering. WWW 2020. (CCF-A) Mengmei Zhang, Linmei Hu, Chuan Shi, Xiao Wang. Adversarial Label-Flipping Attack and Defense for Graph Neural Networks. ICDM 2020. (CCF-B) Xiao Wang, Yuanfu Lu, Chuan Shi, Ruijia Wang, Peng Cui, Shuai Mou. Dynamic Heterogeneous Information Network Embedding with Meta-path based Proximity. IEEE TKDE 2020. (CCF-A) Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Peng Cui, Philip S. Yu, Yanfang Ye. Heterogeneous Graph Attention Network. WWW 2019. (CCF-A) [code (opens new window)] Most influential papers in WWW 2019 (TOP 15) by PaperDigest. 2022 The world artificial intelligence conference youth outstanding paper nomination award. Xiao Wang, Yiding Zhang, Chuan Shi. Hyperbolic heterogeneous information network embedding. AAAI 2019. (CCF-A) [code (opens new window)] Yuanfu Lu, Xiao Wang, Chuan Shi, Philip S. Yu, Yanfang Ye. Temporal network embedding with micro- and macro-dynamics. CIKM 2019. (CCF-B) Ping Xuan, Tonghui Shen, Xiao Wang, Tiangang Zhang, Weixiong Zhang. Inferring disease-associated microRNAs in heterogeneous networks with node attributes. *IEEE/ACM Transactions on Computational Biology and Bioinformatics. *(CCF-C) Ping Xuan, Yangkun Cao, Tiangang Zhang, Xiao Wang, Shuxiang Pan, Tonghui Shen. Drug repositioning through integration of prior knowledge and projections of drugs and diseases. Bioinformatics. (CCF-B) Ping Xuan, Hao Sun, Xiao Wang*, Tiangang Zhang, Shuxiang Pan. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks. International Journal of Molecular Sciences. Liang Yang, Yuexue Wang, Junhua Gu, Xiaochun Cao, Xiao Wang*, Di Jin, Guiguang Ding, Jungong Han, Weixiong Zhang. Autonomous Semantic Community Detection via Adaptively Weighted Low-rank Approximation. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP). (CCF-B) Chuan Shi, Xiaotian Han, Li Song, Xiao Wang*, Senzhang Wang, Junping Du, Philip S. Yu. Deep collaborative filtering with multi-aspect information in heterogeneous networks. IEEE TKDE. (CCF-A) Xiao Wang, Ziwei Zhang, Jing Wang, Peng Cui, Shiqiang Yang. Power-law distribution aware trust prediction. IJCAI 2018. (CCF-A) [code (opens new window)] Ke Tu, Peng Cui, Xiao Wang*, Fei Wang, Wenwu Zhu. Structural deep embedding for hyper-networks. AAAI 2018. (CCF-A) [code (opens new window)] Ziwei Zhang, Peng Cui, Jian Pei, Xiao Wang*, Wenwu Zhu. TIMERS: error-bounded SVD restart on dynamic networks. AAAI 2018. (CCF-A) [code (opens new window)] Jing Wang, Feng Tian, Weiwei Liu, Xiao Wang*, Wenjie Zhang, Kenji Yamanishi. Ranking Preserving Nonnegative Matrix Factorization. IJCAI 2018. (CCF-A) Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Xuanrong Yao and Wenwu Zhu. Arbitrary-Order Proximity Preserved Network Embedding. KDD 2018. (CCF-A) [code (opens new window)] Ke Tu, Peng Cui, Xiao Wang, Philip S. Yu and Wenwu Zhu. Deep Recursive Network Embedding with Regular Equivalence. KDD 2018. (CCF-A) [code (opens new window)] Jianxin Ma, Peng Cui, Xiao Wang and Wenwu Zhu. Hierarchical Taxonomy Aware Network Embedding. KDD 2018. (CCF-A) [code (opens new window)] Shaohua Fan, Chuan Shi, Xiao Wang. Abnormal event detection via heterogeneous information network embedding. CIKM 2018. (CCF-B) [code (opens new window)] Ziwei Zhang, Peng Cui, Haoyang Li, Xiao Wang, Wenwu Zhu. Billion-scale Network Embedding with Iterative Random Projection. ICDM 2018. (CCF-B) [code (opens new window)] Hongcui Wang, Erwei Wang, Di Jin, Xiao Wang, etc. Edge content enhanced network embedding. ICTAI 2018. (CCF-C) Jing Hu, Changqing Zhang, Xiao Wang, Pengfei Zhu, Zheng Wang and Qinghua Hu. Latent Subspace Representation For Multiclass Classification. PRICAI 2018. (CCF-C) Peng Cui, Xiao Wang*, Jian Pei, Wenwu Zhu. A survey on network embedding. IEEE TKDE . (CCF-A) ESI highly cited paper! Yanbei Liu, Kaihua Liu, Changqing Zhang, Xiao Wang, Shaona Wang and Zhitao Xiao. Entropy-based active sparse subspace clustering. Multimedia Tools and Applications. (JCR-3) Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, Shiqiang Yang. Community Preserving Network Embedding. The 31st AAAI Conference on Artificial Intelligence (AAAI-17). [CODE (opens new window)] (CCF-A) Most influential papers in AAAI 2017 (TOP 15) by PaperDigest Jing Wang, Feng Tian, Xiao Wang*, Chang Hong Liu, Hongchuan Yu, Liang Yang. Multi-Component Nonnegative Matrix Factorization. The 26th International Joint Conference on Artificial Intelligence (IJCAI-17). (CCF-A) Jing Wang, Feng Tian, Chang Hong Liu, Hongchuan Yu, Xiao Wang*, Xianchao Tang. Robust Nonnegative Matrix Factorization with Ordered Structure Constraints. The 2017 International Joint Conference on Neural Networks (IJCNN 2017). Oral. (CCF-C) Xianchao Tang, Tao Xu, Xia Feng, Guoqing Yang, Jing Wang, Qiannan Li, Yanbei Liu, Xiao Wang*. Learning Community Structures: Global and Local Perspectives. Neurocomputing, 2017. (JCR-2) Yingli Zhong, Ping Xuan, Xiao Wang, Tiangang Zhang, Jianzhong Li, Yong Liu, Weixiong Zhang. A non-negative matrix factorization based method for predicting disease-associated miRNAs in miRNA-disease bilayer network. Bioinformatics, 2017. (CCF-B) Jing Wang, Feng Tian, Chang Hong Liu, Hongchu an Yu, Kun Zhan, Xiao Wang*. Diverse multi-view nonnegative matrix factorization for data representation. IEEE Transactions on Cybernetics, 2017. (JCR-1) Xiao Wang, Di Jin, Xiaochun Cao, Liang Yang, Weixiong Zhang. Semantic community detection in large attribute networks. The Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16). [CODE (opens new window)] (CCF-A) Jing Wang, Xiao Wang, Feng Tian, Chang Hong Liu, Hongchuan Yu, Yanbei Liu. Adaptive Multi-View Semi-Supervised Nonnegative Matrix Factorization. The 23rd International Conference on Neural Information Processing (ICONIP 2016). (CCF-C) Liang Yang, Xiaochun Cao, Dongxiao He, Chuan Wang, Xiao Wang, Weixiong Zhang. Modularity based community detection with deep learning. The 25th International Joint Conference on Artificial Intelligence (IJCAI-16). (CCF-A) Jing Wang, Xiao Wang, Feng Tian, Chang Hong Liu, Hongchuan Yu. Constrained Low-Rank Representation for Robust Subspace Clustering. IEEE Transactions on Cybernetics, 2016. (JCR-1) Yanbei Liu, Kaihua Liu, Changqing Zhang, Jing Wang, Xiao Wang*. Unsupervised Feature Selection via Diversity-induced Self-representation. Neurocomputing 2016. [CODE (opens new window)] (JCR-2) Xianchao Tang, Guoqing Yang, Tao Xu, Xia Feng, Xiao Wang*, Qiannan Li, Yanbei Liu. Link community detection by nonnegative matrix factorization with multi-step similarities. Modern Physics Letters B. 2016. Jing Wang, Feng Tian, Changhong Liu, Xiao Wang. Robust Semi-supervised Nonnegative Matrix Factorization. The 2015 International Joint Conference on Neural Networks (IJCNN 2015). Accepted as Oral. (CCF-C) Xiaochun Cao, Xiao Wang, Di Jin, Yixin Cao, Dongxiao He. The (un)supervised detection of overlapping communities as well as hubs and outliers via (Bayesian) NMF [C]. The 23th International World Wide Web Conference (WWW2014), poster. Xiaochun Cao, Xiao Wang, Di Jin, Yixin Cao, Dongxiao He. Identifying overlapping communities as well as hubs and outliers via nonnegative matrix factorization [J]. Scientific Reports 2013, 3, 2993[CODE (opens new window)] (JCR-2) Liang Yang, Xiaochun Cao, Di Jin, Xiao Wang, Dan Meng. A Uni?ed Semi-Supervised Community Detection Framework Using Latent Space Graph Regularization. IEEE Trans. on Cybernetics, 2014 (JCR-1) Xiaochun Cao, Xiao Wang*, Di Jin, Xiaojie Guo, Xianchao Tang. A Stochastic Model for Detecting Overlapping and Hierarchical Community Structure. PLOS ONE 2015. Liang Yang, Di Jin, Xiao Wang, Xiaochun Cao. Active Link Selection for Efficient Semi-supervised Community Detection. Scientific Reports 2015. (JCR-2) Xiao Wang, Xiaochun Cao, Di Jin, Yixin Cao, Dongxiao He. The (un)supervsied NMF methods for discovering overlapping communities as well as hubs and outliers in networks. Physica A: Statistical Mechanics and its Applications. 2015. This is the journal extension version of our WWW2014 paper. *Corresponding author/Equal contribution.

推荐链接
down
wechat
bug