当前位置: X-MOL首页全球导师 国内导师 › 张蓥莹

个人简介

教育背景 2008-2014 Ph.D Lehigh University 工作经历 2017- 至今 助理教授, 清华大学丘成桐数学科学中心 2014-2017, J.J. Sylvester助理教授, The Johns Hopkins University

研究领域

微分几何

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

On deformations of Fano manifolds (With H.-D. Cao, X. Sun, S.-T. Yau), Math. Ann. (2021) Residue formula for an obstruction to Coupled Kahler-Einstein metrics (With A. Futaki), J. Math. Soc. Japan (2021) Weil-Petersson Metrics on Deformation Spaces (with H.-D. Cao, X. Sun, S.-T. Yau), J. Iran. Math. Soc. (2020) A Liouville-type theorem and Bochner formula for harmonic maps into metric spaces (with B. Freidin). Comm. Anal. Geom.(2020) Existence of harmonic maps into CAT(1) spaces (with C. Breiner, A. Fraser, L.-H. Huang, C. Mese, P. Sargent). Comm. Anal. Geom.(2020) Coupled Sasaki-Ricci solitons (With A. Futaki), Sci. China Math. (2019) Regularity of Harmonic Maps from Polyhedral to CAT(1) Spaces (with C. Breiner, A. Fraser, L.-H. Huang, C. Mese, P. Sargent), Cal. Var. PDE 57 (2018). On the Structure of Gradient Yamabe Solitons (with H.-D. Cao and X. Sun), Math. Res. Lett. (2012).

推荐链接
down
wechat
bug