个人简介
教育背景
2010-2015 加州大学伯克利分校 博士
2006-2010 北京大学 学士
工作经历
2020至今,清华大学丘成桐数学科学中心 副教授
2018-2020,清华大学丘成桐数学科学中心 助理教授
2016-2018,普渡大学 Golomb访问助理教授
2015-2016,哈佛大学 博士后
研究领域
分析与偏微分方程。半经典与微局部分析,谱理论与散射理论
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Resonance-free region in scattering by a strictly convex obstacle,Arkiv för Matematik 52 (2014), 257-289.
Scattering resonances of convex obstacles for general boundary conditions, Communications in Mathematical Physics 335 No. 2 (2015), 759-807.
Semiclassical Cauchy estimates and applications, Transactions of the American Mathematical Society 369 (2017), 975-995.
(With Maciej Zworski) A local trace formula for Anosov flows, with appendices by Frédéric Naud, Annales Henri Poincaré 18 (2017),1-35.
(With Semyon Dyatlov) Resonances for open quantum maps and a fractal uncertainty principle, Communications in Mathematical Physics 354 No. 1 (2017), 269-316
(With Semyon Dyatlov) Dolgopyat's method and the fractal uncertainty principle, Analysis & PDE 11 No. 6 (2018), 1457-1485
(With Kiril Datchev) Exponential lower resolvent bounds far away from trapped sets, to appear in Journal of Spectral Theory, arXiv:1705.03976
(With Semyon Dyatlov) Semiclassical measures on hyperbolic surfaces have full support, Acta Mathematica 220 (2018), 297-339
Control for Schrodinger equation on hyperbolic surfaces, Mathematical Research Letters 25 No. 6 (2018), 1865-1877
(With Ruixiang Zhang) Fractal uncertainty principle with explicit exponent, Mathematische Annalen 376 (2020), 1031-1057
Damped wave equation on compact hyperbolic surfaces, Communications in Mathematical Physics 373 No. 3 (2020), 771-794
Quantum chaos and fractal uncertainty principle, to appear in Proceedings of ICCM.
(With Semyon Dyatlov and Stéphane Nonnenmacher) Control of eigenfunctions on surfaces of variable curvature, to appear in Journal of American Mathematical Society